
Package: FLBEIA (via r-universe)
August 16, 2024

Title Bio-Economic Impact Assessment of Management Strategies using
FLR

Version 1.16.1.19

Date 2024-07-16

Description A simulation toolbox that describes a fishery system under
a Management Strategy Estrategy approach. The objective of the
model is to facilitate the Bio-Economic evaluation of
Management strategies. It is multistock, multifleet and
seasonal. The simulation is divided in 2 main blocks, the
Operating Model (OM) and the Management Procedure (MP). In
turn, each of these two blocks is divided in 3 components: the
biological, the fleets and the covariables on the one hand, and
the observation, the assessment and the advice on the other.

LinkingTo Rcpp

Depends methods, R(>= 3.5.0), ggplot2, FLCore (>= 2.6.5), FLFleet

Imports stats, utils, FLXSA, FLa4a, Matrix, FLash, mvtnorm, mlogit,
nloptr, triangle, arrayhelpers, dplyr, plyr, purrr, tidyr,
tidyverse, tibble, Rcpp

Suggests R.rsp, spict, XLConnect

Additional_repositories http://flr-project.org/R

License GPL (>= 2)

Language en-GB

URL http://flr-project.org/FLBEIA

BugReports https://github.com/flr/FLBEIA/issues

Collate ``genericMethods.R'' ``Class_0a_FLlst-beia.R''
``Class_0b_FLAccesors_beia.R'' ``Class_1_FLBDsim.R''
``Class_2_FLSRsim.R'' ``Class_3_FLCatchExt.R''
``Class_4_FLMetierExt.R'' ``Class_5_FLFleetExt.R''
``Auxiliary_Functions_biolfleets2flstock.R''
``Auxiliary_Functions_Calculations_exem.R''
``Auxiliary_Functions_Checks.R''

1

http://flr-project.org/R
http://flr-project.org/FLBEIA
https://github.com/flr/FLBEIA/issues

2

``Auxiliary_Functions_Data_Manipulation.R''
``Auxiliary_Functions_Effort_Dynamics.R''
``Auxiliary_Functions_Observation_Model.R''
``Auxiliary_Functions_Population_Dynamics.R''
``Auxiliary_Functions_remove_units.R''
``Auxiliary_Functions_xtabs2.R'' ``setPlusGroupFLBiol.R''
``stf_correctSel.R'' ``Conditioning_1_CobbDouglasFit.R''
``Conditioning_2_SelAtAge.R'' ``Conditioning_calculate.CDparam.R''
``Conditioning_create.advice.data.R''
``Conditioning_create.BDs.data.R''
``Conditioning_create.biol.arrays.R''
``Conditioning_create.biols.data.R''
``Conditioning_create.ecoData.arrays.R''
``Conditioning_create.fleets.arrays.R''
``Conditioning_create.fleets.data.R''
``Conditioning_create.indices.data.R''
``Conditioning_create.list.stks.flq.R''
``Conditioning_create.list.stks.flqa.R''
``Conditioning_create.SRs.data.R''
``Conditioning_CtrlCreators_advice.r''
``Conditioning_CtrlCreators_assessment.r''
``Conditioning_CtrlCreators_biols.R''
``Conditioning_CtrlCreators_covars.r''
``Conditioning_CtrlCreators_fleets.r''
``Conditioning_CtrlCreators_Observation.r''
``Conditioning_InitialPop.R'' ``data.R'' ``ecoSum_DAMARA_function.R''
``Functions_Checks.R'' ``Functions_FLFleet.R''
``Functions_FLFleets.R'' ``MAIN_Function.R''
``Method_propagate_FLFleet.R'' ``MP_1_Observation.R''
``MP_1a_Observation_Model.R''
``MP_1b_Observation_Model_Functions.R'' ``MP_2_Assessment.R''
``MP_2_Assessment_sca2flbeia.R'' ``MP_2_Assessment_spict2flbeia.R''
``MP_3_Advice.R'' ``MP_3a_fwdBD.R'' ``MP_3a_fwdBDControl.R''
``MP_3b_HCRs.R'' ``MP_3c_HCR_BoBane.R'' ``MP_3c_HCR_BoBane_JD.R''
``MP_3c_HCR_F2CatchHCR.R'' ``MP_3c_HCR_Froese.R''
``MP_3c_HCR_ICES_MSY.R'' ``MP_3c_HCR_neaMAC_ltmp.R''
``MP_3c_HCRE_ane.R'' ``MP_3d_HCR_AnnexIV.R'' ``MP_3d_HCR_GHL.R''
``MP_3d_HCR_ICES_Cat3.R'' ``MP_3d_HCR_ICES_Cat3_bsafe_hrcap.R''
``MP_3e_HCR_SWWMAP.R'' ``MP_3f_CFP_MSY_HCR.R''
``MP_3g_MultiStockHCR.R'' ``MP_3h_ModelFreeHCR.R'' ``OM_1_biol.om.R''
``OM_1a_Population_Growth_Functions.R''
``OM_1a1_Stock_Recruitment_functions.R''
``OM_1a1_Stock_Recruitment_functions_segregmix.R''
``OM_1a2_DensityDependent_weight_functions.R'' ``OM_2_fleet.om.R''
``OM_2a_Effort_Dynamics.R'' ``OM_2a_Effort_Dynamics_Auxiliary.R''
``OM_2a_Effort_Dynamics_LO_functions_exem.R''
``OM_2a_Effort_Dynamics_LO_MaxProf.R''
``OM_2a_Effort_Dynamics_LO_QuotaSwap_exem.R''

Contents 3

``OM_2a_Effort_Dynamics_MaxProf.R''
``OM_2a_Effort_Dynamics_SMFB.R''
``OM_2a_Effort_Dynamics_SMFB_VarEffortShare.R''
``OM_2a1_Catch_Production_Functions.R''
``OM_2a1_catchability2zero.R'' ``OM_2b_EffDyn_TAC_OverS_Func.R''
``OM_2b_Update_catch.R'' ``OM_2c_Price_Dynamics.R''
``OM_2d_Fleet_Capital_Dynamics.R'' ``OM_2e_CapitalDyn_SCD.R''
``OM_3_covars.om.R'' ``PlotEco.R'' ``PlotFLBiols.R'' ``PlotFLFleets.R''
``PlotfltStkSum.R'' ``Results_JoinIterations.R''
``Results_Summary.R'' ``Results_SummaryPlots.R'' ``brps_seasonal.R''
``RcppExports.R''

VignetteBuilder R.rsp

RoxygenNote 7.2.2

Repository https://flr.r-universe.dev

RemoteUrl https://github.com/flr/FLBEIA

RemoteRef HEAD

RemoteSha 3936481dc2b2ad1150cba2aed2a2dc7e8afe5863

Contents
annualTAC . 4
biolfleets2flstock . 7
bioSum . 8
brpsson . 17
calculate.q.sel.flrObjs . 18
checkFLBEIAData . 19
create.advice.ctrl . 21
create.advice.data . 21
create.assess.ctrl . 22
create.BDs.data . 23
create.biol.arrays . 24
create.biols.ctrl . 25
create.biols.data . 26
create.covars.ctrl . 27
create.ecoData . 28
create.fleets.arrays . 29
create.fleets.ctrl . 32
create.fleets.data . 33
create.indices.data . 35
create.obs.ctrl . 36
create.SRs.data . 37
datasets . 38
ecoSum_damara . 40
extractBRP . 42
FLBDsim . 43
FLBEIA . 44

4 annualTAC

FLCatchesExt . 49
FLCatchExt . 51
FLFleetExt . 52
FLFleetsExt . 54
FLMetierExt . 55
FLMetiersExt . 56
FLSRsim . 57
joinIter . 58
plotbioSum . 59
plotBRPsson . 61
plotEco . 62
plotFLBiols . 63
plotFLFleets . 64
plotfltStkSum . 65
revenue_flbeia . 65
segremix . 66
SelAtAge . 67
setUnitsNA . 69
stock.fleetInfo . 70
tlandStock . 70
unit2age . 72
updateFLBiols . 72
wtadStock . 73
wtalStock . 74

Index 75

annualTAC Harvest Control Rules (HCRs)

Description

There are several HCRs available in FLBEIA which are used within the main function FLBEIA to
generate the management advice in each step. But they can also be used independently.

Usage

annualTAC(stocks, advice, advice.ctrl, year, stknm, ...)

F2CatchHCR(stocks, advice, advice.ctrl, year, stknm, ...)

FroeseHCR(stocks, advice, advice.ctrl, year, stknm, ...)

IcesHCR(stocks, advice, advice.ctrl, year, stknm, ...)

neaMAC_ltmp(stocks, advice, advice.ctrl, year, stknm, ...)

aneHCRE(stocks, advice, advice.ctrl, year, stknm, ...)

annualTAC 5

annexIVHCR(indices, advice, advice.ctrl, year, stknm, ...)

ghlHCR(indices, advice, advice.ctrl, year, stknm, ...)

IcesCat3HCR(indices, advice, advice.ctrl, year, stknm, ...)

IcesCat3HCR_bsafe_hrcap(indices, advice, advice.ctrl, year, stknm, ...)

MAPHCR(stocks, advice, advice.ctrl, year, stknm, ...)

CFPMSYHCR(stocks, advice, advice.ctrl, year, stknm, ...)

MultiStockHCR(stocks, indices, advice, advice.ctrl, year, stknm, ...)

pidHCR(indices, advice, advice.ctrl, year, stknm, ...)

pidHCRItarg(indices, advice, advice.ctrl, year, stknm, ...)

little2011HCR(indices, advice, advice.ctrl, year, stknm, ...)

Arguments

stocks And FLStocks object.
advice A list with two FLQuant elements, TAC and quota.share. TAC is an FLQuant

with quant dimension equal to the number of stocks in biols object, the names
used in in the quant dimension must be equal to those used in biols. quota.share
is a list with one element per stock in biols object indicating the quota share
per stock and fleet. The quant dimension of the elements must be equal to the
number of fleets and the names used must be equal to those in fleets objects.

advice.ctrl A list with the settings to control the advice model for each stock (the HCR for
each stock, the reference points used in the HCR, additional parameters, ...)

year The position of the assessment year in the stocks and advice objects.
stknm The name of the stock for which advice is being generated.
... Any extra arguments needed for specific HCRs.
indices A list of FLIndices. Each element must correspond with one of the stocks in

biols object.

Details

There are two types of HCRs model-free HCRs and model-Based HCRs. Model-free HCRs use
abundance indices to generate the advice and hence it use FLIndices object as input data. Model-
based HCRs use estimates of stock abundance and stock exploitation level to generate the advice.

• Model-Free HCRs: annexIVHCR, ghlHCR, little2011HCR, pidHCR, pidHCRItarg, IcesCat3HCR
and IcesCat3HCR_bsafe_hrcap.

• Model-Based HCRs: aneHCRE, annualTAC, CFPMSYHCR, F2CatchHCR, FroeseHCR, IcesHCR,
MAPHCR, neaMAC_ltmp.

6 annualTAC

Rules’ description:

• aneHCRE: The HCR used in the bay of biscay anchovy long term management plan.

• aneHCRs: The HCRs (escapement biomass) tested for the bay of biscay anchovy with differ-
ent calendars. For details see Sanchez et al. 2019. MEPS 617-618: 245-263.

• annexIVHCR: The HCR used by EC and ICES to generate the TAC advice for data poor
stocks.

• annualTAC: A HCR that generates annual TAC advice. The HCR provides the whole flexibil-
ity of fwd.

• CFPMSYHCR: HCR adapting the MAP HCR to allow flexibility in the year Fmsy is achieved.
The user can specify the year in which you aim to reach Fmsy, with a linear transition between
Fsq to Fmsy in the intervening years

• F2CatchHCR: This HCR transforms the fishing mortality advice given as input data to catch
advice without any other restriction.

• FroeseHCR: The HCR defined in the paper by Froese, Branch et al. in Fish and Fisheries
2011.

• ghlHCR: The model-free HCR used in the management of greenland-halibut

• IcesHCR: The HCR used by ICES to generate TAC advice in the MSY framework.

• IcesCat3HCR: HCR that implements the ICES HCR for Category 3 DLS stocks (see ICES
CM 2012/ACOM 68: Category 3 - Method 3.2)

• IcesCat3HCR_bsafe_hrcap: Alternative approach for IcesCat3HCR with a biomass safeguard
and harvest rate caps (from ICES WKDLSSLS2019)

• little2011HCR: The HCR defined in the paper by Little et al. in ICES Journal of Marine
Science 2011.

• MAPHRC: The HCR proposed by the EC in the evaluation on multi-annual management plans
in 2015.

• MultiStockHRC: A HCR that produces TAC advice for several stocks simultaneously. It uses
a fishing mortality target and an upper bound to conciliate the TAC advices. In the case of
stocks without exploitation rate estimates it uses the catch.

• neaMAC_ltmp: The HCR used in the north-east atlantic mackerel long term management
plan. It is a particular case of the IcesHCR.

• pidHCR, pidHCRItarg: The HCRs defined in the paper by Pomaerede et al. in Aquatic Living
Resources 2010.

The HCRs are documented in detail in the manual of the library.

Value

The advice input object updated with the management advice (TAC) generated by the HCR.

Examples

Not run:
library(FLBEIA)
library(FLAssess) # required to use the IcesHCR. Not available for win64

biolfleets2flstock 7

library(FLash) # required to use the IcesHCR. Not available for win64
library(ggplot2)

Load the data to run FLBEIA in a one stock one fleet example using the HCR used by ICES
in the MSY framework.
data(one)

oneAdv$TAC[,ac(2009:2025)] <- NA # Put NA-s in the projection years to check how the
function fills the advice object.

res <- IcesHCR(oneSt, oneAdv, oneAdvC, 19, 'stk1')
The value printed in the screen is the fishing mortality used in the advice.

res$TAC[,'2009'] # The resulting management advice.

End(Not run)

biolfleets2flstock Function to generate an FLStock from an FLBiol and FLFleet

Description

Function to generate an FLStock from an FLBiol and FLFleet

Usage

biolfleets2flstock(biol, fleets)

Arguments

biol An FLBiolobject
fleets An FLFleetExt object

Value

An FLStock object with abundance and biological information from biol argument and exploitation
levels from fleets argument

Examples

Not run:

data(res_flbeia)

biol <- oneRes$biols$stk1
fleets <- oneRes$fleets

stk <- biolfleets2flstock(biol=biol, fleets=fleets)

End(Not run)

8 bioSum

bioSum Summary of the FLBEIA output

Description

Summarize the results of the simulation in data frames.

Usage

bioSum(
obj,
stknms = "all",
years = dimnames(obj$biols[[1]]@n)$year,
long = FALSE,
scenario = "bc",
byyear = TRUE,
ssb_season = NULL,
brp = NULL

)

bioSumQ(obj, prob = c(0.95, 0.5, 0.05))

fltSum(
obj,
flnms = "all",
years = dimnames(obj$biols[[1]]@n)$year,
byyear = TRUE,
long = FALSE,
InterestRate = 0.03,
scenario = "bc"

)

fltSumQ(obj, prob = c(0.95, 0.5, 0.05))

fltStkSum(
obj,
flnms = names(obj$fleets),
stknms = catchNames(obj$fleets),
years = dimnames(obj$biols[[1]]@n)[[2]],
byyear = TRUE,
long = FALSE,
scenario = "bc",
verbose = TRUE

)

fltStkSumQ(obj, prob = c(0.95, 0.5, 0.05))

bioSum 9

mtStkSum(
obj,
flnms = names(obj$fleets),
stknms = catchNames(obj$fleets),
years = dimnames(obj$biols[[1]]@n)[[2]],
byyear = TRUE,
long = FALSE,
scenario = "bc"

)

mtStkSumQ(obj, prob = c(0.95, 0.5, 0.05))

mtSum(
obj,
flnms = names(obj$fleets),
years = dimnames(obj$biols[[1]]@n)[[2]],
byyear = TRUE,
long = FALSE,
scenario = "bc"

)

mtSumQ(obj, prob = c(0.95, 0.5, 0.05))

advSum(
obj,
stknms = "all",
years = dimnames(obj$biols[[1]]@n)$year,
long = FALSE,
scenario = "bc"

)

advSumQ(obj, prob = c(0.95, 0.5, 0.05))

riskSum(
obj,
stknms = names(obj$biols),
Bpa,
Blim,
Prflim,
flnms = names(obj$fleets),
years = dimnames(obj$biols[[1]]@n)[[2]],
scenario = "bc"

)

npv(
obj,
discF = 0.05,
y0,

10 bioSum

flnms = names(obj$fleets),
years = dimnames(obj$biols[[1]]@n)[[2]],
scenario = "bc"

)

npvQ(obj, prob = c(0.05, 0.5, 0.95))

vesselSum(
obj,
flnms = "all",
years = dimnames(obj$biols[[1]]@n)$year,
byyear = TRUE,
long = FALSE,
scenario = "bc"

)

vesselSumQ(obj, prob = c(0.95, 0.5, 0.05))

vesselStkSum(
obj,
flnms = names(obj$fleets),
stknms = catchNames(obj$fleets),
years = dimnames(obj$biols[[1]]@n)[[2]],
byyear = TRUE,
long = FALSE,
scenario = "bc"

)

vesselStkSumQ(obj, prob = c(0.95, 0.5, 0.05))

Arguments

obj The output of the FLBEIA function.

stknms Names of the stock for which the indicators will be calculated.

years the names of the years for which the indicators will be calculated.

long logical. The data frame should be constructed using long or wide format? De-
fault FALSE.

scenario a character string with the name of the scenario corresponding with obj. Default
bc.

byyear logical. The indicators should be provided at season or year level? Default
TRUE.

ssb_season If byyear = TRUE, the season in which ssb will be taken.

brp a data frame with columns stock, iter and one colum per reference point with
the value of the biological reference points per stock and iteration. The used
reference points are Bpa, Blim, Btarget, Fpa, Flim and Ftarget.

prob a numeric vector with the probabilities used to calculate the quantiles.

bioSum 11

flnms Names of the fleet for which the indicators will be calculated.

InterestRate Capital oportunity cost rate.

verbose logical. If TRUE, prints the function steps.

Bpa named numeric vector with one element per stock in stknms. The precautionary
approach stock spawning biomass used in riskSum function to calculate biolog-
ical risk yearly.

Blim named numeric vector with one element per stock in stknms. The limit stock
spawning biomass used in riskSum function to calculate biological risk yearly.

discF Discount rate.

y0 character. Reference year.

ProfRef named numeric vector with one element per fleet in flnms. The reference profit
level used in riskSum function to calculate economic risk yearly.

Details

• advSum, advSumQ: Data frame with the indicators related with the management advice (TAC).
The indicators are: "catch", "discards", "discRat", "landings", "quotaUpt" and "tac".

• bioSum, bioSumQ: Data frame with the biological indicators. The indicators are: "biomass",
"catch", "catch.iyv", "discards", "disc.iyv", "f", "landings", "land.iyv", "rec" and "ssb".

• fltSum, fltSumQ: Data frame with the indicators at fleet level. The indicators are: "capac-
ity", "catch", "costs", "discards", "discRat", "effort", "fcosts", "gva", "grossValue", "landings",
"fep", "nVessels", "price", "grossSurplus", "quotaUpt", "salaries", "vcosts" and "profitability".

• fltStkSum, fltStkSumQ: Data frame with the indicators at fleet and stock level. The indicators
are: "landings", "discards", "catch", "price", "quotaUpt", "tacshare", "discRat" and "quota".

• npv: A data frame with the net present value per fleet over the selected range of years.

• mtSum, mtSumQ: Data frame with the indicators at metier level. The indicators are: "eff-
share", "effort", "grossValue" and "vcost".

• mtStkSum, mtStkSumQ: Data frame with the indicators at fleet and metier level. The indica-
tors are: "catch", "discards", "discRat", "landings" and "price".

• riskSum: A data frame with the risk indicators. The indicators are: "pBlim", "pBpa" and
"pPrflim".

• vesselSum, vesselSumQ: Data frame with the indicators at vessel level. The indicators are:
"catch", "costs", "discards", "discRat", "effort", "fcosts", "gva", "grossValue", "landings",
"fep", "price", "grossSurplus", "quotaUpt", "salaries", "vcosts" and "profitability".

• vesselStkSum, vesselStkSumQ: Data frame with the indicators at vessel and stock level. The
indicators are: "landings", "discards", "catch", "price", "quotaUpt", "tacshare", "discRat" and
"quota".

• summary_flbeia: An array with four dimensions: stock, year, iteration, indicator. The indica-
tors are: recruitment, ssb, f, biomass, catch, landings and discards.

• ecoSum_damara: ecoSum built in the framework of Damara project.

The data frames

12 bioSum

Value

A data frame with columns for scenario, year, stock, iter, indicator, value,...

The data frames can be of wide or long format. In long format all the indicators are in the same
column. There is one column, indicator, for the name of the indicator and a second one value for
the numeric value of the indicator. In the wide format each of the indicators correspond with one
column in the data frame. The long format it is recommendable to work with ggplot2 functions for
example while the wide format it is more efficient for memory allocation and speed of computations.

The quantile version of the summaries, fooQ, returns the quantiles of the indicators. In the long
format as many columns as elements in prob are created. The name of the columns are the ele-
ments in prob preceded by a q. In the wide format for each of the indicators as many columns
as elements in prob are created. The names of the colums are the elements in prob preceded by
q_name_of_the_indicator.

Examples

Not run:

library(FLBEIA)

Apply the summary functions to the examples runs in FLBEIA help page.
Test the different arguments in summary function.

data(res_flbeia)

#--
Example One: One stock, one fleet, one iter.
#--

Wide format (default)

oneRes_bio <- bioSum(oneRes)
oneRes$fleets[[1]] <- setUnitsNA(oneRes$fleets[[1]])
oneRes_flt <- fltSum(oneRes)
oneRes_fltStk <- fltStkSum(oneRes)
oneRes_mt <- mtSum(oneRes)
oneRes_mtStk <- mtStkSum(oneRes)
oneRes_adv <- advSum(oneRes)

head(oneRes_bio)
head(oneRes_flt)
head(oneRes_fltStk)
head(oneRes_mt)
head(oneRes_mtStk)
head(oneRes_adv)

oneRes_bioQ <- bioSumQ(oneRes_bio)
oneRes_fltQ <- fltSumQ(oneRes_flt)
oneRes_fltStkQ <- fltStkSumQ(oneRes_fltStk)
oneRes_mtQ <- mtSumQ(oneRes_mt)
oneRes_mtStkQ <- mtStkSumQ(oneRes_mtStk)

bioSum 13

oneRes_advQ <- advSumQ(oneRes_adv)

head(oneRes_bioQ)
head(oneRes_fltQ)
head(oneRes_fltStkQ)
head(oneRes_mtQ)
head(oneRes_mtStkQ)
head(oneRes_advQ)

Long format for a range of years

oneRes_bio <- bioSum(oneRes, long = TRUE, years = ac(2016:2020))
oneRes_flt <- fltSum(oneRes, long = TRUE, years = ac(2016:2020))
oneRes_fltStk <- fltStkSum(oneRes, long = TRUE, years = ac(2016:2020))
oneRes_mt <- mtSum(oneRes, long = TRUE, years = ac(2016:2020))
oneRes_mtStk <- mtStkSum(oneRes, long = TRUE, years = ac(2016:2020))
oneRes_adv <- advSum(oneRes, long = TRUE, years = ac(2016:2020))

head(oneRes_bio)
head(oneRes_flt)
head(oneRes_fltStk)
head(oneRes_mt)
head(oneRes_mtStk)
head(oneRes_adv)

oneRes_bioQ <- bioSumQ(oneRes_bio)
oneRes_fltQ <- fltSumQ(oneRes_flt)
oneRes_fltStkQ <- fltStkSumQ(oneRes_fltStk)
oneRes_mtQ <- mtSumQ(oneRes_mt)
oneRes_mtStkQ <- mtStkSumQ(oneRes_mtStk)
oneRes_advQ <- advSumQ(oneRes_adv)

head(oneRes_bio)
head(oneRes_flt)
head(oneRes_fltStk)
head(oneRes_mt)
head(oneRes_mtStk)
head(oneRes_adv)

Wide format with seasonal disaggregation
(Note: No seasonal disagregation available for adv summaries)

oneRes_bio <- bioSum(oneRes, byyear = FALSE)
oneRes_flt <- fltSum(oneRes, byyear = FALSE)
oneRes_fltStk <- fltStkSum(oneRes, byyear = FALSE)
oneRes_mt <- mtSum(oneRes, byyear = FALSE)
oneRes_mtStk <- mtStkSum(oneRes, byyear = FALSE)
oneRes_adv <- advSum(oneRes) # Advice summary is only by year.

oneRes_bioQ <- bioSumQ(oneRes_bio)
oneRes_fltQ <- fltSumQ(oneRes_flt)
oneRes_fltStkQ <- fltStkSumQ(oneRes_fltStk)
oneRes_mtQ <- mtSumQ(oneRes_mt)

14 bioSum

oneRes_mtStkQ <- mtStkSumQ(oneRes_mtStk)
oneRes_advQ <- advSumQ(oneRes_adv)

Long format and seasonal

oneRes_bio <- bioSum(oneRes, long = TRUE)
oneRes_flt <- fltSum(oneRes, long = TRUE, byyear = FALSE)
oneRes_fltStk <- fltStkSum(oneRes, long = TRUE, byyear = FALSE)
oneRes_mt <- mtSum(oneRes, long = TRUE, byyear = FALSE)
oneRes_mtStk <- mtStkSum(oneRes, long = TRUE, byyear = FALSE)
oneRes_adv <- advSum(oneRes, long = TRUE) # Advice summary is only by year.

oneRes_bioQ <- bioSumQ(oneRes_bio)
oneRes_fltQ <- fltSumQ(oneRes_flt)
oneRes_fltStkQ <- fltStkSumQ(oneRes_fltStk)
oneRes_mtQ <- mtSumQ(oneRes_mt)
oneRes_mtStkQ <- mtStkSumQ(oneRes_mtStk)
oneRes_advQ <- advSumQ(oneRes_adv)

#--
Example OneIt: As one but with iterations.
#--

Wide format (default)

oneItRes_bio <- bioSum(oneItRes, scenario = 'with_iters')
oneItRes$fleets[[1]] <- setUnitsNA(oneItRes$fleets[[1]])
oneItRes_flt <- fltSum(oneItRes, scenario = 'with_iters')
oneItRes_fltStk <- fltStkSum(oneItRes, scenario = 'with_iters')
oneItRes_mt <- mtSum(oneItRes, scenario = 'with_iters')
oneItRes_mtStk <- mtStkSum(oneItRes, scenario = 'with_iters')
oneItRes_adv <- advSum(oneItRes, scenario = 'with_iters')

oneItRes_bioQ <- bioSumQ(oneItRes_bio)
oneItRes_fltQ <- fltSumQ(oneItRes_flt)
oneItRes_fltStkQ <- fltStkSumQ(oneItRes_fltStk)
oneItRes_mtQ <- mtSumQ(oneItRes_mt)
oneItRes_mtStkQ <- mtStkSumQ(oneItRes_mtStk)
oneItRes_advQ <- advSumQ(oneItRes_adv)

Long format for a range of years

oneItRes_bio <- bioSum(oneItRes, long = TRUE, years = ac(2016:2020))
oneItRes_flt <- fltSum(oneItRes, long = TRUE, years = ac(2016:2020))
oneItRes_fltStk <- fltStkSum(oneItRes, long = TRUE, years = ac(2016:2020))
oneItRes_mt <- mtSum(oneItRes, long = TRUE, years = ac(2016:2020))
oneItRes_mtStk <- mtStkSum(oneItRes, long = TRUE, years = ac(2016:2020))
oneItRes_adv <- advSum(oneItRes, long = TRUE, years = ac(2016:2020))

oneItRes_bioQ <- bioSumQ(oneItRes_bio)
oneItRes_fltQ <- fltSumQ(oneItRes_flt)

bioSum 15

oneItRes_fltStkQ <- fltStkSumQ(oneItRes_fltStk)
oneItRes_mtQ <- mtSumQ(oneItRes_mt)
oneItRes_mtStkQ <- mtStkSumQ(oneItRes_mtStk)
oneItRes_advQ <- advSumQ(oneItRes_adv)

Wide format with seasonal disaggregation
(Note: No seasonal disagregation available for adv summaries)

oneItRes_bio <- bioSum(oneItRes, byyear = FALSE)
oneItRes_flt <- fltSum(oneItRes, byyear = FALSE)
oneItRes_fltStk <- fltStkSum(oneItRes, byyear = FALSE)
oneItRes_mt <- mtSum(oneItRes, byyear = FALSE)
oneItRes_mtStk <- mtStkSum(oneItRes, byyear = FALSE)
oneItRes_adv <- advSum(oneItRes) # Advice summary is only by year.

oneItRes_bioQ <- bioSumQ(oneItRes_bio)
oneItRes_fltQ <- fltSumQ(oneItRes_flt)
oneItRes_fltStkQ <- fltStkSumQ(oneItRes_fltStk)
oneItRes_mtQ <- mtSumQ(oneItRes_mt)
oneItRes_mtStkQ <- mtStkSumQ(oneItRes_mtStk)
oneItRes_advQ <- advSumQ(oneItRes_adv)

Long format and seasonal

oneItRes_bio <- bioSum(oneItRes, long = TRUE) # Biol summary is only by year.
oneItRes_flt <- fltSum(oneItRes, long = TRUE, byyear = FALSE)
oneItRes_fltStk <- fltStkSum(oneItRes, long = TRUE, byyear = FALSE)
oneItRes_mt <- mtSum(oneItRes, long = TRUE, byyear = FALSE)
oneItRes_mtStk <- mtStkSum(oneItRes, long = TRUE, byyear = FALSE)
oneItRes_adv <- advSum(oneItRes, long = TRUE) # Advice summary is only by year.

oneItRes_bioQ <- bioSumQ(oneItRes_bio)
oneItRes_fltQ <- fltSumQ(oneItRes_flt)
oneItRes_fltStkQ <- fltStkSumQ(oneItRes_fltStk)
oneItRes_mtQ <- mtSumQ(oneItRes_mt)
oneItRes_mtStkQ <- mtStkSumQ(oneItRes_mtStk)
oneItRes_advQ <- advSumQ(oneItRes_adv)

oneItRes_risk <- riskSum(oneItRes, Bpa = c(stk1= 900), Blim = c(stk1 = 600),
Prflim = c(fl1 = 0), scenario = 'alternative')

oneItRes_npv <- npv(oneItRes, y0 = '2014')

#--
Example Multi: Two stock, two fleet, four iters.
#--

Wide format (default)

multiRes_bio <- bioSum(multiRes)
multiRes$fleets <- FLFleetsExt(lapply(multiRes$fleets, function(x) setUnitsNA(x)))
multiRes_flt <- fltSum(multiRes)

16 bioSum

multiRes_fltStk <- fltStkSum(multiRes)
multiRes_mt <- mtSum(multiRes)
multiRes_mtStk <- mtStkSum(multiRes)
multiRes_adv <- advSum(multiRes)

multiRes_bioQ <- bioSumQ(multiRes_bio)
multiRes_fltQ <- fltSumQ(multiRes_flt)
multiRes_fltStkQ <- fltStkSumQ(multiRes_fltStk)
multiRes_mtQ <- mtSumQ(multiRes_mt)
multiRes_mtStkQ <- mtStkSumQ(multiRes_mtStk)
multiRes_advQ <- advSumQ(multiRes_adv)

Long format for a range of years

multiRes_bio <- bioSum(multiRes, long = TRUE, years = ac(2016:2020))
multiRes_flt <- fltSum(multiRes, long = TRUE, years = ac(2016:2020))
multiRes_fltStk <- fltStkSum(multiRes, long = TRUE, years = ac(2016:2020))
multiRes_mt <- mtSum(multiRes, long = TRUE, years = ac(2016:2020))
multiRes_mtStk <- mtStkSum(multiRes, long = TRUE, years = ac(2016:2020))
multiRes_adv <- advSum(multiRes, long = TRUE, years = ac(2016:2020))

multiRes_bioQ <- bioSumQ(multiRes_bio)
multiRes_fltQ <- fltSumQ(multiRes_flt)
multiRes_fltStkQ <- fltStkSumQ(multiRes_fltStk)
multiRes_mtQ <- mtSumQ(multiRes_mt)
multiRes_mtStkQ <- mtStkSumQ(multiRes_mtStk)
multiRes_advQ <- advSumQ(multiRes_adv)

Wide format with seasonal disaggregation
(Note: No seasonal disagregation available for adv summaries)

multiRes_bio <- bioSum(multiRes, byyear = FALSE)
multiRes_flt <- fltSum(multiRes, byyear = FALSE)
multiRes_fltStk <- fltStkSum(multiRes, byyear = FALSE)
multiRes_mt <- mtSum(multiRes, byyear = FALSE)
multiRes_mtStk <- mtStkSum(multiRes, byyear = FALSE)
multiRes_adv <- advSum(multiRes) # Advice summary is only by year.

multiRes_bioQ <- bioSumQ(multiRes_bio)
multiRes_fltQ <- fltSumQ(multiRes_flt)
multiRes_fltStkQ <- fltStkSumQ(multiRes_fltStk)
multiRes_mtQ <- mtSumQ(multiRes_mt)
multiRes_mtStkQ <- mtStkSumQ(multiRes_mtStk)
multiRes_advQ <- advSumQ(multiRes_adv)

Long format and seasonal

multiRes_bio <- bioSum(multiRes, long = TRUE, byyear = FALSE)
multiRes_flt <- fltSum(multiRes, long = TRUE, byyear = FALSE)
multiRes_fltStk <- fltStkSum(multiRes, long = TRUE, byyear = FALSE)
multiRes_mt <- mtSum(multiRes, long = TRUE, byyear = FALSE)
multiRes_mtStk <- mtStkSum(multiRes, long = TRUE, byyear = FALSE)
multiRes_adv <- advSum(multiRes, long = TRUE) # Advice summary is only by year.

brpsson 17

multiRes_bioQ <- bioSumQ(multiRes_bio)
multiRes_fltQ <- fltSumQ(multiRes_flt)
multiRes_fltStkQ <- fltStkSumQ(multiRes_fltStk)
multiRes_mtQ <- mtSumQ(multiRes_mt)
multiRes_mtStkQ <- mtStkSumQ(multiRes_mtStk)
multiRes_advQ <- advSumQ(multiRes_adv)

multiRes_npv <- npv(multiRes, y0 = '2014')
risk_multiRes <- riskSum(multiRes, Bpa = c(stk1= 135000, stk2 = 124000),

Blim = c(stk1= 96000, stk2 = 89000), Prflim = c(fl1 = 0, fl2 = 0),
scenario = 'alternative')

End(Not run)

brpsson Reference points for a seasonal model

Description

Function to estimate reference points when having a seasonal model

Usage

brpsson(
stk,
B0,
R0,
rec.ss = 1,
ssb.ss = 1,
sr_model,
sr_params,
Fprop = rep(1/dim(stk)[4], dim(stk)[4]),
Fscan = seq(0, 4, by = 0.01),
oldest = 100,
nrun = 200,
tol = 0.01

)

Arguments

stk An FLStock object.

B0 The value of the virgin biomass.

R0 The expected recrutiment in the virgin population.

rec.ss The recruitment season (numeric). Default value = 1.

ssb.ss The spawning season (numeric). Default value = 1.

18 calculate.q.sel.flrObjs

sr_model A character with the name of the model to simulate the recruitment process.

sr_params A named vector with the SR parameter values.

Fprop A vector with the same length as the number of seasons with the proportion of
F by season. By default the same proportion in all the seasons is assumed.

Fscan A vector with the F values to be simulated. By default, will scan values between
0 and 4 (by 0.01 increments).

oldest The maximum age class to be considered. Default 100.

nrun The maximum number of years to project forward until equilibrium.

tol The desired accuracy.

See Also

plotBRPsson

Examples

library(FLBEIA)
data(multistk) # object with 2 seasons and 3 iterations

stk <- trim(multistk, year=1, iter = 1)

loop for different catch proportions by season
for (p in seq(0.1,0.9,0.1)) {

fruns <- brpsson(stk, B0=1e+05, R0=27489766, rec.ss=2, ssb.ss=2,
sr_model="bevholt", sr_params=c(a = 29988835.109, b = 9090.909),
Fprop = c(p, 1-p))

}

plotBRPsson(fruns, pdfnm="stk_Fbar_vs_SPR.pdf")

calculate.q.sel.flrObjs

Calculates selectivity-related parameters

Description

Given stock abundances and catches (i.e. landings and discards), this function estimates values for
fleets[[fl]]@metiers[[mt]]@catches[[st]]@catch.q, fleets[[fl]]@metiers[[mt]]@catches[[st]]@landings.sel,
and fleets[[fl]]@metiers[[mt]]@catches[[st]]@discards.sel for all years except the sim-
ulation years. For the simulation years, the parameter values are set as the mean of the parameters
along mean.yrs.

Usage

calculate.q.sel.flrObjs(biols, fleets, BDs, fleets.ctrl, mean.yrs, sim.yrs)

checkFLBEIAData 19

Arguments

biols An FLBiols object.

fleets An FLFleetsExt object. An extended version of the FLFleet object defined in
FLCore.

BDs A list of FLSRsim objects. One per biomass dynamic stock in biols object.

fleets.ctrl Fleets’ control file containing the catch production function for each fleet and
stock.

mean.yrs A character vector with the name of the years used to calculate mean selectivity.

sim.yrs A character vector with the name of the years in the projection period.

Value

A FLFleetsExt object.

checkFLBEIAData Checking inputs of FLBEIA function

Description

This functions checks wether some conditions are met for the inputs in the different arguments of
the FLBEIA function. There are also checking functions for specific inputs: biols, fleets, SRs,
advice, and obs.ctrl arguments.

Functions available:

• checkFLBEIAData: for checking inputs for differents arguments of FLBEIA function (of class
FLBiols).

• checkBiols: for checking biols argument of FLBEIA function (of class FLBiols).

• checkFleets: for checking fleets argument of FLBEIA function (of class FLFleetsExt).

• checkSRs: for checking SRs argument of FLBEIA function (list of FLSRsim objects).

• checkAdvice: for checking advice argument of FLBEIA function (of class list with two
FLQuant elements, TAC and quota.share).

• checkObsctrl: for checking obs.ctrl argument of FLBEIA function (of class list).

Usage

checkFLBEIAData(
biols,
SRs = NULL,
BDs = NULL,
fleets,
covars = NULL,
indices = NULL,
advice = NULL,
main.ctrl,

20 checkFLBEIAData

biols.ctrl,
fleets.ctrl,
covars.ctrl,
obs.ctrl,
assess.ctrl,
advice.ctrl

)

checkBiols(object)

checkFleets(object, ctrl = NULL)

checkSRs(object)

checkBDs(object)

checkAdvice(object)

checkObsctrl(object)

Arguments

biols An FLBiols object.

SRs A list of FLSRsim objects.

BDs A list of FLBDsim objects.

fleets An FLFleetsExt object.

covars A list of FLQuants.

indices A list of FLIndices.

advice A list with two FLQuant elements, TAC and quota.share.

main.ctrl A list with the settings to control the main function.

biols.ctrl A list with the settings to control the biological operating model for each stock.

fleets.ctrl A list with the settings to control the fleets operating model for each fleet.

covars.ctrl A list with the settings to control the covars operating model for each fleet.

obs.ctrl A list with the settings to control the observation model for each stock.

assess.ctrl A list with the settings to control the specify the assessment model for each
stock.

advice.ctrl A list with the settings to control the advice model for each stock.

object An object of the appropiate class depending on the FLBEIA argument to be
checked:

• biols : A FLBiols object.
• fleets :A FLFleetsExt object.
• SRs : A list of FLSRsim objects.
• BDs : A list of FLBDsim objects.

create.advice.ctrl 21

• advice : A list with two FLQuant elements, TAC and quota.share..
• obs.ctrl: A list.

ctrl An object of class list (optional argument), input for fleets.ctrl argument of
FLBEIA function.

Value

An error message if there is any error detected.

create.advice.ctrl advice.ctrl object creator

Description

It creates the advice.ctrl object to be used in the call to the main function FLBEIA.

Usage

create.advice.ctrl(stksnames, HCR.models = NULL, ...)

Arguments

stksnames A vector with the name of the stocks in the OM.

HCR.models A character vector of the same length as stksnames with the name of the HCR
used to generate the management advice.

... any extra arguments necessary in the HCR specific creators. ’...’ are extracted
using ’list(...)’, this generates a named list with the extra arguments. To assure
the correct functioning the extra arguments must have a name.

Value

A list of lists with the basic structure of the advice.ctrl object.

create.advice.data FLBEIA easy conditioning: advice argument creator

Description

create.advice.data function creates a list (elements: TAC, TAE and quota.share)

Usage

create.advice.data(yrs, ns, ni, stks.data, fleets)

22 create.assess.ctrl

Arguments

yrs A vector with c(first.yr,proj.yr, last.yr) where
• first.yr: First year of simulation (number).
• proj.yr: First year of projection (number).
• last.yr: Last year of projection (number).

ns Number of seasons (number).
ni Number of iterations (number).
stks.data A list with the names of the stocks and the following elements: Optionals:

• stk_advice.TAC.flq: TAC of the stock ’stk’ (FLQuant).
• stk_advice.TAE.flq: TAE of the stock ’stk’ (FLQuant).
• stk_advice.quota.share.flq: Quota share of the stock ’stk’ (FLQuant).
• stk_advice.avg.yrs: Historic years to calculate the average of TAC, TAE or

quota share of the stock ’stk’ (FLQuant).
fleets Optional argument only required if stk_advice.quota.share is not specified. It

could be the output of create_fleets_FLBEIA function (FLFleets).

Value

A list with TAC, TAE and quota.share elements.

create.assess.ctrl assess.ctrl object creator

Description

It creates the assess.ctrl object to be used in the call to the main function FLBEIA.

Usage

create.assess.ctrl(stksnames, assess.models = NULL, assess.ctrls = NULL, ...)

Arguments

stksnames A vector with the name of the stocks in the OM.
assess.models A character vector of the same length as stksnames with the name of the model

used to obtaine the perceived population in the MP.
assess.ctrls A list of the same length as stksnames with the arguments needed to fit the

assessment model.
... any extra arguments necessary in the model specific creators. ’...’ are extracted

using ’list(...)’, this generates a named list with the extra arguments. To assure
the correct functioning the extra arguments must have a name.

Value

A list of lists with the basic structure of the assess.ctrl object.

create.BDs.data 23

create.BDs.data FLBEIA easy conditioning: BDs argument creator

Description

create.BDs.data function creates a list of FLBDsim objects.

Usage

create.BDs.data(yrs, ns, ni, stks.data)

Arguments

yrs A vector with c(first.yr,proj.yr, last.yr) where:

• first.yr: First year of simulation (number).
• proj.yr: First year of projection (number).
• last.yr: Last year of projection (number).

ns Number of seasons (number).

ni Number of iterations (number).

stks.data A list with the name of the stks and the following elements:

• stk.unit: Number of units of the stock (number).
• stk.age.min: Minimum age class of the stock (number).
• stk.age.max: Maximum age class of the stock (number).
• stk_bd.model: Name of the model to simulate biomass dinamics of the

stock (character).
• stk_params.name: Name of the parameters (vector).
• stk_params.array: Parameter values (array).
• stk_biomass.flq: Biomass values (FLQuant).
• stk_catch.flq: Catch values (FLQuant).
• stk_range.plusgroup: Plusgroup age (numeric).
• stk_range.minyear: Minimum year (numeric).
• stk_alpha: Maximum variability of carrying capacity.

Optionals:

• stk_gB.flq: Surplus production (FLQuant).
• stk_uncertainty.flq: Uncertainty (FLQuant).

Value

A list of FLBDsim objects.

24 create.biol.arrays

create.biol.arrays Function to generate an FLBiol object given inputs as arrays

Description

This function generates an FLBiol object, given the data inputs as arrays. Supported formats are
Excel (xls and xlsx) and R format (RData).

Usage

create.biol.arrays(
filename = NULL,
data = NULL,
name = NA,
ages,
hist.yrs,
sim.yrs,
fbar = NULL,
mean.yrs,
source = "rdata",
unit = list()

)

Arguments

filename A character vector with the name of the files containing the stock data. Sup-
ported formats are Excel (xls and xlsx) and R format (RData). In case of using
R format, the information must be stored in data object (consisting in a list with
the different elements). The following information is compulsory: abundances
in numbers at age (n), mean weight at age (wt), maturity (mat), natural mortality
(m), moment of the year when spawning occurs in percentage (spwn), fishing
mortality at age (f) and catch in numbers at age (caa). For the rest of informa-
tion, if not provided, default values are set. For example, fecundity (fec) is set
to 1, landings and discard in numbers at age (laa and daa) are set to cca and 0,
respectively. Finally for weights, if missing, weights at age for landings (wl)
and discards (wd) are set to the weights in the population and weights at age for
catch (wc) are set to the weighted mean of the weights of landings and discards.

data An R object with the stock data.

name A character (optional) with the name of the stock.

ages A numeric vector with the age classes of stock.

hist.yrs A vector with the historical years.

sim.yrs A vector with the simulation years.

fbar A numeric vector with the age range (min,max) to be used for estimating average
fishing mortality.

create.biols.ctrl 25

mean.yrs A vector with the years used to compute the mean to condition the parameters
in the projection period.

source Character, ’excel’, ’rdata’, ’FLStock’ or ’object’. ’rdata’ (default) if an RData
object is used, ’excel’ if the data is provided in an Excel file, ’FLStock’ if the
data is provided in and FLSTock object and ’object’ if the data is an object of
the working environment.

unit A list with the units of the different elements included in filename. Unitless
objects must be set to ” or character(1). This parameter is only required if
excel==FALSE. When using Excell files the units are taken from the first row
and column (cell A1) of each sheet. If the cell is empty then units are set to NA,
in case of an unitless object then 1 must be inputed into cell A1.

Value

An FLBiol.

Author(s)

Dorleta Garcia & Sonia Sanchez.

See Also

FLBiol, create.fleets.arrays

create.biols.ctrl biols.ctrl object creator

Description

It creates the biols.ctrl object to be used in the call to the main function FLBEIA.

Usage

create.biols.ctrl(stksnames, growth.models = NULL, immediate = FALSE, ...)

Arguments

stksnames A vector with the name of the stocks in the OM.
growth.models A character vector of the same length as stksnames with the name of the model

used to project the stock populations in the simulation.
immediate logical, indicating if the warnings should be output immediately.
... any extra arguments necessary in the model specific creators. ’...’ are extracted

using ’list(...)’, this generates a named list with the extra arguments. To assure
the correct functioning the extra arguments must have a name.

Value

A list of lists with the basic structure of the biols.ctrl object.

26 create.biols.data

create.biols.data FLBEIA easy conditioning: biols argument creator

Description

create.biols.data function creates an FLBiols object.

Usage

create.biols.data(yrs, ns, ni, stks.data)

Arguments

yrs A vector with c(first.yr,proj.yr, last.yr) where

• first.yr: First year of simulation (number).
• proj.yr: First year of projection (number).
• last.yr: Last year of projection (number).

ns Number of seasons (number).

ni Number of iterations (number).

stks.data A list with the name of the stks and the following elements:

• stk.unit: Number of units of the stock (number).
• stk.age.min: Minimum age class of the stock (number).
• stk.age.max: Maximum age class of the stock (number).
• stk_n.flq: Numbers at age in the population(FLQuant).
• stk_wt.flq: Weight at age of an individual (FLQuant).
• stk_m.flq: Mortality rate at age of the population (FLQuant).
• stk_fec.flq: Fecundity at age (FLQuant).
• stk_mat.flq: Percentage of mature individuals at age (FLQuant).
• stk_spwn.flq: Proportion of time step at which spawning ocurrs (FLQuant).
• stk.range.plusgroup: Plusgroup age (number).
• stk.range.minyear: Minimum year (number).
• stk.range.maxyear: Maximum year (number).
• stk_range.minfbar: Minimum age to calculate average fishing mortality

(number).
• stk_range.maxfbar: Maximum age to calculate average fishing mortality

(number).
• stk_biol.proj.avg.yrs: Historic years to calculate the average of spwn, fec,

m and wt for the projection (vector).

Value

An FLBiol object

create.covars.ctrl 27

create.covars.ctrl covars.ctrl object creator

Description

It creates the covars.ctrl object to be used in the call to the main function FLBEIA.

Usage

create.covars.ctrl(
cvrsnames,
process.models = NULL,
flq,
immediate = FALSE,
...

)

Arguments

cvrsnames A vector with the name of the covariates in the OM.

process.models A character vector of the same length as cvrsnames with the name of the process
model followed by each of the covariates. The first element corresponds with the
process model of the first covariable in cvrsnames, the second with the second
and so on. The default is NULL in which case ’fixedCovar’ is used for **all**
the covariates.

flq An FLQuant to give structure to the FLQuants to be used within the function,
the dimension and dimnames in ’year’, ’season’ and ’iter’ will be used to create
the necessary FLQuants.

immediate logical, indicating if the warnings should be output immediately.

... any extra arguments necessary in the HCR specific creators. ’...’ are extracted
using ’list(...)’, this generates a named list with the extra arguments. To assure
the correct functioning the extra arguments must have a name.

Value

A list of lists with the basic structure of the covars.ctrl object.

28 create.ecoData

create.ecoData Function to generate the covar object neccesary to compute economic
indicators and fills in economic slots in FLFleets object

Description

This function generates an covar object with the economic indicators and fills in vcost, fcost, ca-
pacity and crewshare slots in FLFleets object. The data is given in excel File (xls and xlsx).

Usage

create.ecoData(file, fltObj, hist.yrs, mean.yrs, sim.yrs)

Arguments

file An excel file with the economic data. The names used for the sheets and the
columns must be the same used to name fleets and metiers in fltObj. However,
the fleets in the excel file can be a subset of the fleets in the fleetsObj, i.e., is not
neccesary to provide economic data for all the fleets. The order of metiers in the
columns data must correspond with the name of the metiers used in the FLFleet
object.

fltObj An FLFleets object with the structure of the fleet and which may contain histor-
ical data.

hist.yrs A vector with the historical years.

mean.yrs A vector with the years used to compute the mean to condition the parameters
in the projection period.

sim.yrs A vector with the simulation years.

Value

An /codeFLFleetsExt.

Author(s)

Dorleta Garcia & Sonia Sanchez.

See Also

FLFleetsExt, create.biol.arrays

create.fleets.arrays 29

create.fleets.arrays Function to generate an FLFleetsExt object given inputs as arrays

Description

This function generates an FLFleetsExt object, given the data inputs as arrays. Supported formats
are Excel (xls and xlsx) and R format (RData).

Usage

create.fleets.arrays(
stk_objs,
caa_objs,
caa_objs_path,
price_objs,
price_objs_path,
catch_obj,
effort_obj,
flt_obj = NULL,
stk_nms = NA,
flt_nms,
flt_mt_nms,
flt_mt_stk_nms,
ages = NULL,
hist.yrs,
sim.yrs,
mean.yrs,
new_hist.yrs = hist.yrs,
update_catch_effort = TRUE,
update_price = TRUE,
update_weight = TRUE,
caa_flt_mt_correspondences = NULL,
paa_flt_mt_correspondences = NULL,
caaOpt,
priceOpt,
excel = TRUE

)

Arguments

stk_objs A character vector with the names of the files containing the stocks data. See
create.biol.arrays for more detail. Supported format is only Excel (xls and xlsx),
each stock can be in different format.

caa_objs A character vector with the names of the files containing the catch at age data (in
numbers), both for landings and discards. Supported formats are Excel (xls and
xlsx) and R format (RData), each file can be in different format. The number of
required files depend of the value of caaOpt argument:

30 create.fleets.arrays

• caaOpt = 1 or 2 => one per stock and fleet. Named vector stknm_fltnm
• caaOpt = 3, 4 or 5=> one per stock. Named vector stknm

If NULL, the function looks for "caa_stknm_flnm.xlsx" in caaOpt = 1 or 2 and
"caa_stknm.xlsx" in caaOpt = 3 ,4 or 5.

caa_objs_path A character vector with the caa_objs file path.

price_objs A character vector with the names of the files containing the price at age data.
Supported formats are Excel (xls and xlsx) and R format (RData), each prices
file can be in different format. The number of required files depend of the value
of caaOpt argument:

• caaOpt = 1 or 2 => one per stock and fleet. Named vector stknm_fltnm.
• caaOpt = 3, 4 or 5=> one per stock. Named vector stknm.

price_objs_path

A character vector with the price_objs file path.

catch_obj A character vector with the names of the files containing the catch data in Fcube
format. Supported formats are Excel (xls and xlsx) and R format (RData) and
required columns are ’year’, ’fleet’, ’metier’, ’stock’, ’category’ and ’catch’.

effort_obj A character vector with the names of the files containing the effort data in Fcube
format. Supported formats are Excel (xls and xlsx) and R format (RData) and
required columns are ’year’, ’fleet’, ’metier’ and ’effort’. Both catch_obj and
effort_obj must be in the same format.

flt_obj An FLFleets object (optional) with the structure of the fleet and which may
contain historical data. If this object is provided, then the arguments stk_nms,
flt_nms, flt_mt_nms and ages will not be used and excel argument must be
set to FALSE.

stk_nms A character vector (optional) with the name of all the stocks caugth by the dif-
ferent fleets.

flt_nms A character vector with the name of the fleets.

flt_mt_nms A list with one element per fleet. In turn, each element is a character vector with
the names of the metiers in the corresponding fleet.

flt_mt_stk_nms A list with one element per fleet and metier. In turn, each element is a character
vector with the names of the stocks in the corresponding fleet and metier.

ages A list with one element per stock, with the age classes of the stock.

hist.yrs A vector with the historical years.

sim.yrs A vector with the simulation years.

mean.yrs A vector with the years used to compute the mean to condition the parameters
in the projection period.

new_hist.yrs A vector with the years from input files that will be used to condition the pa-
rameters in the historic years. If a value is not provided, the it is set equal to
hist.yrs.

update_catch_effort

Logical. If TRUE (default), catch and effort must be provided and catch_obj,
effort_obj arguments are required.

create.fleets.arrays 31

update_price Logical. If TRUE (default), prices must be provided and price_objs and price_objs_path
arguments are required.

update_weight Logical. If TRUE (default), weights at age for landings and discards must be
provided, so wl and wd sheets are required in files listed in stk_objs argument.

caa_flt_mt_correspondences

An Excel file name. This file must contain one sheet per stock, with the cor-
respondences between the fleet segments used in caaa_obj data and the fleet
metier segmentation used in the analysis. If the file does not exist, it is supposed
that the caa data is given by fleet and metier.

paa_flt_mt_correspondences

An Excel file name. This file must contain information on prices correspon-
dences, with same format and requirements as caa_flt_mt_correspondences
argument.

caaOpt A code number to determine the way in wich catch at age data are provided. The
option to be used depends on the data availabiltiy, from data rich to data-poor
and the following codes are available:

• 1If catch at age data is available at metier level for all the metiers.
• 2If catch at age data is only available at fleet level.
• 3If catch at age data is disaggregated but the segments do not correspond

exactly with the metiers/fleets considered in the case study.
• 4If catch at age data is only available at stock level.
• 5If we want to use the data available previously in the FLCatch objects

from flt_obj to derive catch profiles at age and then apply caaOpt==3 us-
ing only one fleet segment, fseg, which represents all the fleets and metiers.
Note: This approach could lead to a different total catch at age profile de-
rived from the fleets to those in the stocks.

priceOpt A code number to determine the way in wich price at age data are provided. The
option to be used depends on the data availabiltiy, from data rich to data-poor
and the following codes are available:

• 1If price data is available at metier level for all the metiers.
• 2If price data is only available at fleet level.
• 3If price data is disaggregated but the segments do not correspond exactly

with the metiers/fleets considered in the case study.
• 4If price data is only available at stock level.

excel Logical. If TRUE (default), the data in the Excel file is used to create the stucture
of the FLFleets object; whereas if FALSE, the flt_obj object is used instead.

Value

An FLFleetsExt.

Author(s)

Dorleta Garcia & Sonia Sanchez.

32 create.fleets.ctrl

See Also

FLFleetsExt, create.biol.arrays

create.fleets.ctrl fleets.ctrl object creator

Description

It creates the fleets.ctrl object to be used in the call to the main function FLBEIA.

Usage

create.fleets.ctrl(
fls,
n.fls.stks,
fls.stksnames,
catch.threshold = NULL,
seasonal.share = NULL,
effort.models = NULL,
capital.models = NULL,
catch.models = NULL,
price.models = NULL,
flq,
...

)

Arguments

fls character vector with fleet names

n.fls.stks numeric vector with the same length as fls with the declaration of the number of
stocks caugth by each of the fleets.

fls.stksnames character vector with length = sum(n.fls.stks), with the names of the stocks
caught by the fleet, the vector must follow the order used in the previous ar-
gument.

• the first n.fls.stks[1] elements correspond to the stocks caught by the first
fleet in fls

• the following n.fls.stks[2] elements correspond to the stocks caught by the
second fleet in fls

• and so on.
catch.threshold

if(NULL) => 0.9 for all the stocks (NULL is the default) else it must be an
FLQuant with dim = c(nstks,ny,1,ns,nit)

seasonal.share an FLQuant with dimension [num. fleets, num. years, 1,num. seasons, 1, num.
iterations] with elements between 0 and 1 to indicate how the quota of each fleet
is distributed along seasons. The sum along seasons (seasonSums) must return
an FLQuant with all elements equal to 1.

create.fleets.data 33

effort.models characted vector with the same length as fls with the effort model followed by
each of the fleet. the first element correspond with the effort model of the first
fleet in fls, the second with the second and so on. The default is NULL in which
case ’fixedEffort’ is used for **all** the fleets.

capital.models characted vector with the same length as fls with the capital model followed by
each of the fleet. the first element correspond with the capital model of the first
fleet in fls, the second with the second and so on. The default is NULL in which
case ’fixedCapital’ is used for **all** the fleets.

catch.models characted vector with the same length as sum(n.fls.stks) with the catch model
followed by each of the fleet for each stock. the first element correspond with
the catch model of the first fleet in fls and the first stock in fls.stksnames, the
second with the second and so on. The default is NULL in which case ’Cobb-
DouglasAge’ is used for **all** the fleets.

price.models characted vector with the same length as sum(n.fls.stks) with the price model
followed by each of the fleet for each stock. the first element correspond with the
price model of the first fleet in fls and the first stock in fls.stksnames, the second
with the second and so on. The default is NULL in which case ’fixedPrice’ is
used for **all** the fleets.

flq An FLQuant to give structure to the FLQuants to be used within the function,
the dimension and dimnames in ’year’, ’season’ and ’iter’ will be used to create
the necessary FLQuants.

... Any extra arguments necessary in the model specific creators. ’...’ are extracted
using ’list(...)’, this generates a named list with the extra arguments. To assure
the correct functioning the extra arguments must have a name, for example, elas
= FLQuant(1,dimnames = DimsNms).

Value

A list of lists with the basic structure of the fleets.ctrl object.

create.fleets.data FLBEIA easy conditioning: fleets argument creator

Description

create.fleets.data function creates an FLFleetsExt object

Usage

create.fleets.data(yrs, ns, ni, fls.data, stks.data)

34 create.fleets.data

Arguments

yrs A vector with c(first.yr,proj.yr, last.yr) where

• first.yr: First year of simulation (number).
• proj.yr: First year of projection (number).
• last.yr: Last year of projection (number).

ns Number of seasons (number).

ni Number of iterations (number).

fls.data A list with the name of the fleets and the following elements:

• fl.met: Name of the metiers in the fleet ’fl’ (vector).
• fl.met.stks: Name of the stocks in the metier ’met’ and fleet ’fl’ (vector).
• fl_effort.flq: ’fl’ fleet’s effort (FLQuant).
• fl.met_effshare.flq: ’fl’ fleet and ’met’ metier’s effort share (FLQuant).
• fl.met.stk_landings.n.flq: ’fl’ fleet,’met’ metier and ’stk’ stock’s landings in

numbers at age.
• fl_proj.avg.yrs: Historic years to calculate the average of effort, fcost, crew-

share, capacity in ’fl’ fleet (vector) in the projection years.

Optionals:

• fl_capacity.flq: ’fl’ fleet’s capacity (FLQuant).
• fl_fcost.flq: ’fl’ fleet’s fixed cost (FLQuant).
• fl_crewshare.flq: ’fl’ fleet’s crewshare (FLQuant).
• fl.met_vcost.flq: ’fl’ fleet and ’met’ metier’s variable costs (FLQuant).
• fl.met.stk_landings.wt.flq: ’fl’ fleet,’met’ metier and ’stk’ stock’s mean weight

of landings at age.
• fl.met.stk_discards.n.flq: ’fl’ fleet,’met’ metier and ’stk’ stock’s discards in

numbers at age (FLQuant).
• fl.met.stk_discards.wt.flq: ’fl’ fleet,’met’ metier and ’stk’ stock’s mean weight

of discards at age.
• fl.met.stk_price.flq: ’fl’ fleet,’met’ metier and ’stk’ stock’s price at age

(FLQuant).
• fl.met.stk_alpha.flq: ’fl’ fleet,’met’ metier and ’stk’ stock’s Cobb Douglass

alpha parameter (FLQuant).
• fl.met.stk_beta.flq: ’fl’ fleet,’met’ metier and ’stk’ stock’s Cobb Douglass

beta parameter (FLQuant).
• fl.met.stk_catch.q.flq: ’fl’ fleet,’met’ metier and ’stk’ stock’s Cobb Dou-

glass catch.q parameter (FLQuant).
• fl.met_proj.avg.yrs: Historic years to calculate the average of effshare,vcost

for ’fl’ fleet and ’met’ metier in the projection period (vector).
• fl.met.stk_proj.avg.yrs: Historic years to calculate the average of landings.wt,

discards.wt, landings.sel, discards.sel alpha,beta,catch.q for ’fl’ fleet, ’met’
metier and ’stk’ stock in the projection years (vector).

stks.data A list with the name of the stocks and with the next elements:

• stk.unit: Number of units of the stock (number).

create.indices.data 35

• stk.age.min: Minimum age of the stock (number).
• stk.age.max: Maximum age of the stock (number).

Optionals:

• stk_wt.flq: Mean weight at age of an individual (FLQuant). Required if
fl.met.stk_landings.wt.flq is not defined.

• stk_n.flq: Numbers at age in the population(FLQuant). Required if Cobb
Douglas parameters are not defined.

• stk_gB.flq: Biomass growth for the stock modeled in biomass (FLQuant).
Required if Cobb Douglas parameters are not defined.

Value

An FLFleetsExt object.

create.indices.data FLBEIA easy conditioning: indices argument creator

Description

create.indices.data function creates an FLIndices object

Usage

create.indices.data(yrs, ns, ni, stks.data)

Arguments

yrs A vector with c(first.yr,proj.yr, last.yr) where

• first.yr: First year of simulation (number).
• proj.yr: First year of projection (number).
• last.yr: Last year of projection (number).

ns Number of seasons (number).

ni Number of iterations (number).

stks.data A list with the names of the stocks with indices and the following elements:

• stk.unit: Number of units of the stock (number).
• stk.age.min: Minimum age class of the stock (number).
• stk.age.max: Maximum age class of the stock (number).
• stk_indices: Name of indices for the stock ’stk’ (vector).
• stk_ind_index.flq: Historical index data for index ’ind’ of stock ’stk’ (FLQuant).

Optionals:

• stk_ind_type: Type of index (character).
• stk_ind_distribution: Name of the statistical distribution of the ’ind’ index

values for stock ’stk’ (character).

36 create.obs.ctrl

• stk_ind_index.var.flq: Variability in ’ind’ index of stock ’stk’ (FLQuant).
• stk_ind_index.q.flq: Catchability for ’ind’ index of stock ’stk’ (FLQuant).
• stk_ind_catch.n.flq: Catch at age in numbers for ’ind’ index of stock ’stk’(FLQuant).
• stk_ind_catch.wt.flq: Mean weight at age in the catch for ’ind’ index of

stock ’stk’ (FLQuant).
• stk_ind_effort.flq: Effort for ’ind’ index of stock ’stk’ (FLQuant).
• stk_ind_sel.pattern.flq: Selection pattern for ’ind’ index of stock ’stk’ (FLQuant).
• stk_ind_range.min: Minimum age in ’ind’ index of stock ’stk’ (number).
• stk_ind_range.max: Maximum age in ’ind’ index of stock ’stk’ (number).
• stk_ind_range.plusgroup: Plusgroup age in ’ind’ index of stock ’stk’ (num-

ber).
• stk_ind_range.minyear: First year with ’ind’ index data of stock ’stk’ (num-

ber).
• stk_ind_range.maxyear: Last year with ’ind’ index data of stock ’stk’ (num-

ber).
• stk_ind_range.startf: Minimum age for calculating average fishing mortal-

ity for ’ind’ index of stock ’stk’ (number).
• stk_ind_range.endf: Maximum age for calculating average fishing mortal-

ity for ’ind’ index of stock ’stk’ (number).

Value

An FLIndices object.

create.obs.ctrl obs.ctrl object creator

Description

It creates the obs.ctrl object to be used in the call to the main function FLBEIA.

Usage

create.obs.ctrl(
stksnames,
n.stks.inds = NULL,
stks.indsnames = NULL,
stkObs.models = NULL,
indObs.models = NULL,
immediate = FALSE,
...

)

create.SRs.data 37

Arguments

stksnames A vector with the name of the stocks in the OM.

n.stks.inds numeric vector with the same length as stksnames with the declaration of the
number of abundance indices per stock, the order must be the same used in
stksnames.

stks.indsnames NULL or a character vector of length equal to sum(n.stks.inds) with the names
of the indices per stock. The order must be the same used in the previous argu-
ments.

stkObs.models A character vector of the same length as stksnames with the name of the model
used to observed stock data.

indObs.models A character vector of the same length as stks.indsnames with the name of the
model used to generate the abundance indices.

immediate logical, indicating if the warnings should be output immediately.

... any extra arguments necessary in the model specific creators. ’...’ are extracted
using ’list(...)’, this generates a named list with the extra arguments. To assure
the correct functioning the extra arguments must have a name.

Value

A list of lists with the basic structure of the obs.ctrl object.

create.SRs.data FLBEIA easy conditioning: SRs argument creator

Description

create.BDs.data function creates a list of FLBDsim objects

Usage

create.SRs.data(yrs, ns, ni, stks.data)

Arguments

yrs A vector with c(first.yr,proj.yr, last.yr) where:

• first.yr: First year of simulation (number).
• proj.yr: First year of projection (number).
• last.yr: Last year of projection (number).

ns Number of seasons (number).

ni Number of iterations (number).

stks.data A list with the name of the stks and the following elements:

• stk.unit: Number of units of the stock (number).
• stk.age.min: Minimum age class of the stock (number).

38 datasets

• stk.age.max: Maximum age class of the stock (number).
• stk_sr.model: Name of the model to simulate recruitment (character).
• stk_params.n: Number of parameters (number).
• stk_params.name: Name of the parameters (vector).
• stk_params.array: Parameter values (array).
• stk_rec.flq: Recruitment values (FLQuant).
• stk_ssb.flq: Spawning stock biomass values (FLQuant).
• stk_proportion.flq: Recruitment distribution in each time step as a propor-

tion (FLQuant, values between 0 and 1).
• stk_prop.avg.yrs: Historical years to calculate the proportion average (vec-

tor).
• stk_timelag.matrix: Timelag between the spawning an recruitment (matrix

[2, number of seasons]). For details see FLSRsim.
• stk_range.plusgroup: Plusgroup age (number).
• stk_range.minyear: Minimum year (number).

Optionals:

• stk_uncertainty.flq: Uncertainty (FLQuant).

Value

A list of FLSRsim objects.

datasets FLBEIA datasets

Description

Example datasets for the classes defined in FLBEIA.

Details

• one: A dataset for running FLBEIA. Example with one stock (age-structured), one fleet, an-
nual steps (one season) and one iteration.

– oneBio (FLBiols) : Biological information on the stock. In this case, the stock is age-
structured.

– oneSR (FLSRsim) : Stock-recruitment model for the stock in oneBio object.
– oneFl (FLFleetsExt) : Information on the fleet and the metier considered.
– oneCv (list of FLQuants) : Covariates information. In this case all are economic indi-

cators.
– oneIndAge and oneIndBio (list of FLIndices) : Indices, if avalable, for the differ-

ent stocks in oneBio. Where oneIndAge and oneIndBio are indices with estimates in
numbers at age and total biomass, respectively.

– oneAdv (list) : Information on TAC and quota share.
– oneMainC (list) : Settings to control the main function FLBEIA. The simulation years.

datasets 39

– oneBioC (list) : Settings to control the biological operating model for the stock in
oneBio object.

– oneFlC (list) : Settings to control the fleet operating model for the fleet in oneFl object.
– oneCvC (list) : Settings to control the covar operating model for each covariate in
covars object. In this case all the covariates are fixed.

– oneObsC, oneObsCIndAge and oneObsCIndBio (list) : Settings to control the observa-
tion model for the stock in oneBio object. In oneObsC the stock is observed without error
and there are no indices available. Alternative control settings are available for cases
when indices are observed, oneObsCIndAge and oneObsCIndBio.

– oneAssC (list) : Settings to control the assessment model for each stock in oneBio
object. In this case, no assessment is carried out.

– oneAdvC (list) : Settings to control the advice model for the stock in oneBio object.

• oneIt: A dataset for running FLBEIA. Same as one dataset, but with three iterations.

• multi: A dataset for running FLBEIA. Example with two stocks (one age-structured and the
other in biomass), two fleets (with 2 metiers each), four seasons and one iteration.

– multiBio (FLBiols) : Biological information on the stocks (one is age-structured and
the other one in total biomass).

– multiSR (FLSRsim) : Stock-recruitment models for the age-structured stock in multiBio
object. In this case a Beverton-Holt (bevholt) is selected.

– multiBD (FLSRsim) : Biomass dynamic model for the stock in biomass in multiBio
object. In this case Pella-Tomlinson model (PellaTom) is selected.

– multiFlC (FLFleetsExt) : Information on the fleets and metiers. In this case there are
two fleets, each one with two metiers, all of them capturing both stocks in multiBio
object.

– multiCv (list of FLQuants) : Covariates information. In this case all are economic
indicators.

– multiAdv (list) : Information on TAC and quota share.
– multiMainC (list) : Settings to control the main function FLBEIA.
– multiBioC (list) : Settings to control the biological operating model for each stock in
multiBio object.

– multiFlC (list) : Settings to control the fleet operating model for each fleet in fleets
object.

– multiCvC (list) : Settings to control the covar operating model for each covariate in
covars object. In this case all the covariates are fixed.

– multiObsC (list) : Settings to control the observation model for each stock in multiBio
object. In this case the stock is observed without error and there are no indices available.

– multiAssC (list) : Settings to control the assessment model for each stock in multiBio
object. In this case, no assessment is carried out.

– multiAdvC (list) : Settings to control the advice model for each stock in multiBio
object.

• res_flbeia: A dataset with the outputs of FLBEIA runs given as input the different datasets
(one, oneIt and multi).

– oneRes (list) : Output of the FLBEIA function, given as input the data in the one
dataset.

40 ecoSum_damara

– onIteRes (list) : Output of the FLBEIA function, given as input the data in the oneIt
dataset.

– multiRes (list) : Output of the FLBEIA function, given as input the data in the multi
dataset.

• mur: A dataset for Stripped Red Mullet in the Bay of Biscay. Information on catch and
abundance indices from Evohe survey.

– catch (data.frame) : The total catch time series data by area from WGBIE report (ICES,
2017). Total catch data is available since 1975. In 1999 France did not report any data.
As France is the main contributor to the total catch, the 1999 catch data was not included
in the analysis.

– evhoe (data.frame) : EVHOE abundance index time series, provided by Ifremer. The
abundance index is available since 1997 and provides an estimation of the biomass to-
gether with a coefficient of variation.

• multistk: A dataset with an FLStock with multiple dimensions.

– multistk (FLStock) : FLStock object with 2 seasons and 3 iterations.

Datasets can be loaded by issuing the data command, like in: data(one).

All available datasets can be checked by: data(package='FLBEIA').

References

ICES, 2017

See Also

FLBEIA, FLBiols, FLFleetsExt, FLSRsim, FLIndices, FLQuant

Examples

data(one)
data(res_flbeia)

ecoSum_damara Biological summary functions

Description

These functions return the biomass (B), fishing mortality (F), spawning stock biomass (SSB), re-
cruitment (R), catches (C), landings (L) and discards (D) indicators. Also indicators comparing the
reference points with the actual values, Bpa, Blim, Btarget, Fpa, Flim and Ftarget, so the biomass
indicators are TRUE if the biomass is above them, and the fishing mortality indicators are TRUE if
the fishing mortality is below them. ssb2Btarget and f2Ftarget return the ratio between SSB and F
and the target reference point.

ecoSum_damara 41

Usage

ecoSum_damara(fleets, flnms = "all", years, covars = NULL)

F_flbeia(obj, years = dimnames(obj$biols[[1]]@n)$year)

SSB_flbeia(obj, years = dimnames(obj$biols[[1]]@n)$year)

B_flbeia(obj, years = dimnames(obj$biols[[1]]@n)$year)

R_flbeia(obj, years = dimnames(obj$biols[[1]]@n)$year)

C_flbeia(obj, years = dimnames(obj$biols[[1]]@n)$year)

L_flbeia(obj, years = dimnames(obj$biols[[1]]@n)$year)

D_flbeia(obj, years = dimnames(obj$biols[[1]]@n)$year)

summary_flbeia(obj, years = dimnames(obj$biols[[1]]@n)$year)

Arguments

fleets A FLFleetsExt object.
flnms Names of the fleet for which the indicators will be calculated.
years The years for which the indicators are extracted.
covars List of FLQuants with information on covariates.
obj The output of the FLBEIA function.

Details

• B_flbeia this function computes SSB.
• F_flbeia this function computes fishing mortiality.
• SSB_flbeia this function computes spawning stock biomass by species.
• R_flbeia this function computes recruitment by stock. If the stock is defined by age this

function the recruiment is computed. ; If the stock is follows a biomass dynamics, this function
gives the growth.

• C_flbeia this function computes catches by fleets and stock.
• L_flbeia this function computes landings by fleets and stock.
• D_flbeia this function computes the discards by fleets and stock.
• summary_flbeia this function computes recruitment, SSB, fishing mortality, total biomass for

all stocks; and catch and landings for all fleets by year and stock.

Value

B_flbeia, F_flbeia... return an array with three dimensions (stock, year and iter). The summary_flbeia
function returns an array with 4 dimensions (stock, year, iter, indicator) with the value of all the in-
dicators.

42 extractBRP

extractBRP Extracts reference points (specifically Bpa, Blim, Bmsy, Fpa, Flim and
Fmsy) from advice.ctrl object, If not available, then values are set to
NA.

Description

The output can be used for the brp argument of bioSum function.

Usage

extractBRP(advice.ctrl, stkn, Btarget = NULL, Ftarget = NULL)

Arguments

advice.ctrl A list with advice controls as the FLBEIA function argument advice.ctrl.

stkn Names of the stocks.

Btarget Named vector with the name of the target biological reference point for each
element in stkn. Default "Bmsy".

Ftarget Named vector with the name of the target fishing mortality reference point for
each element in stkn. Default "Fmsy".

Value

A data frame with columns stock, iter and one colum per reference point with the value of the
biological reference points per stock and iteration. The used reference points are Bpa, Blim, Bmsy,
Fpa, Flim and Fmsy.

See Also

bioSum

Examples

Not run:

library(FLBEIA)

data(one)
extractBRP(oneAdvC, stkn = names(oneBio))

data(oneIt)
extractBRP(oneItAdvC, stkn = names(oneItBio))

data(multi)
extractBRP(multiAdvC, stkn = names(multiBio))

setting targets different to Bmsy and Fmsy

FLBDsim 43

extractBRP(oneAdvC, stkn = names(oneBio),
Btarget=setNames("Btrigger","stk1"), Ftarget=setNames("Ftrigger","stk1"))

Btarget <- setNames(c("Btrigger","Bmsy"),names(oneBio))
Ftarget <- setNames(c("Ftrigger","Fmsy"),names(oneBio))

extractBRP(multiAdvC, stkn = names(multiBio))

End(Not run)

FLBDsim FLBDsim class and methods

Description

A class to simulate the growth of populations aggregated in biomass.

Arguments

... Empty or FLQuants for ’biomass’, ’catch’ and ’uncertainty’ slots and optionally
the values for the rest of the slots.

Details

The FLBDsim has the following slots:

Value

An object of class FLBDsim.

Slots

name The name of the stock.

desc A description of the object.

range The range of the object.

biomass An FLQuant to store the biomass of the stock.

gB An FLQuant to store the surplus production of the stock.

catch An FLQuant to store the catch of the stock.

uncertainty An FLQuant to store the uncertainty that is multiplied to the biomass in every step
of the simulation.

covar An FLQuants to store the covariates that are part of the growth model.

model A character with the name of the model to simulate the recruitment process.

params An array with dimension [numb.params, numb.year, numd.season, numb.iteration] with
year and season and iteration dependent parameters of the growth model.

44 FLBEIA

alpha An array with dimension [numb.year, numd.season, numb.iteration] with year, season and
iteration dependent value bigger than one which indicates, in percentage, how big can be the
biomass in comparison with the carrying capacity.

name The name of the object.

desc Character with the description of the object.

range A numeric vector with the range of the object as in other FLR objects.

FLBEIA Run the FLBEIA bio-economic simulation model

Description

FLBEIA is a simulation model that describes a fishery system under a Management Strategy Eval-
uation framework.The objective of the model is to facilitate the Bio-Economic evaluation of Man-
agement strategies. The model is multistock, multifleet and seasonal. The simulation is divided in 2
main blocks, the Operating Model (OM) and the Management Procedure (MP). In turn, the OM is
divided in 3 components, the biological, the fleets and the covariables component. The MP is also
divided in 3 components, the observation, the assessment and the advice.

Usage

FLBEIA(
biols,
SRs = NULL,
BDs = NULL,
fleets,
covars = NULL,
indices = NULL,
advice = NULL,
main.ctrl,
biols.ctrl,
fleets.ctrl,
covars.ctrl,
obs.ctrl,
assess.ctrl,
advice.ctrl

)

Arguments

biols An FLBiols object.

SRs A list of FLSRsim objects. One per age structured stock in biols object.

BDs A list of FLBDsim objects. One per biomass dynamic stock in biols object.

fleets An FLFleetsExt object. An extended version of the FLFleet object defined in
FLCore.

FLBEIA 45

covars A list of FLQuants used to store any kind of variables that are used within the
simulation and are not stored in the standard objects.

indices A list of FLIndices. Each element must correspond with one of the stocks in
biols object.

advice A list with two FLQuant elements, TAC and quota.share. TAC is an FLQuant
with quant dimension equal to the number of stocks in biols object, the names
used in in the quant dimension must be equal to those used in biols. quota.share
is a list with one element per stock in biols object indicating the quota share
per stock and fleet. The quant dimension of the elements must be equal to the
number of fleets and the names used must be equal to those in fleets objects.

main.ctrl A list with the settings to control the main function (the year range,...).

biols.ctrl A list with the settings to control the biological operating model for each stock
(the population dynamic model used, additional parameters,...)

fleets.ctrl A list with the settings to control the fleets operating model for each fleet (the
fleets’ short and long term dynamic models used, price model, additional pa-
rameters,...)

covars.ctrl A list with the settings to control the covars operating model for each fleet (a
dynamic model for each covariable, additional parameters, ...)

obs.ctrl A list with the settings to control the observation model for each stock (the obser-
vation model for the stock, for stock dependent indices, additional parameters,
...)

assess.ctrl A list with the settings to control the specify the assessment model for each stock
(the assessment model for the stock and the control parameters used to run the
model)

advice.ctrl A list with the settings to control the advice model for each stock (the HCR for
each stock, the reference points used in the HCR, additional parameters, ...)

Value

A list with 8 elements biols, fleets, covars, advice, stocks, indices, fleets.ctrl, pkgs.versions. All the
elements except stocks and pkgs.versions correspond with the the updated versions of the objects
used in the call to FLBEIA. stocks is a list of FLStocks object containing the perceived stocks
used in the management procedure to produce the management advice. pkgs.versions is a matrix
indicating the packages and package version used along the simulation.

Examples

Not run:
library(FLBEIA)
library(FLAssess) # required to use the IcesHCR. Not available for win64
library(FLash) # required to use the IcesHCR. Not available for win64
library(ggplot2)

#--
Example with 1 stock, 1 Fleets, 1 seasons and 1 iteration: one
#--

46 FLBEIA

Load the data to run FLBEIA in a one stock one fleet example using the HCR used by ICES
in the MSY framework.
data(one)

The names and the class of the objects needed to run FLBEIA.
sapply(ls(), function(x) class(get(x)))

In this scenario a single, age-structured, stock is exploited by a single fleet with a
unique metier.
The fleet catches yearly exactly the adviced TAC and there is no exit-entry of vessels
in the fishery.
The stock abundance and exploitation level is observed without error in the observation
model.
There is no assessment model and the TAC advice is used through the HCR used by ICES
in the MSY framework.

s0 <- FLBEIA(biols = oneBio, # FLBiols object with one FLBiol element for stk1.
SRs = oneSR, # A list with one FLSRsim object for stk1.
BDs = NULL, # No Biomass Dynamic populations in this case.

fleets = oneFl, # FLFleets object with on fleet.
covars = oneCv, # covars not used

indices = NULL, # indices not used
advice = oneAdv, # A list with two elements 'TAC' and 'quota.share'

main.ctrl = oneMainC, # A list with one element to define the start and end of
the simulation.

biols.ctrl = oneBioC, # A list with one element to select the model to simulate
the stock dynamics.

fleets.ctrl = oneFlC, # A list with several elements to select fleet dynamic models
and store additional parameters.

covars.ctrl = oneCvC, # covars control not used
obs.ctrl = oneObsC, # A list with one element to define how the stock observed

("PerfectObs").
assess.ctrl = oneAssC, # A list with one element to define how the stock assessment

model used ("NoAssessment").
advice.ctrl = oneAdvC) # A list with one element to define how the TAC advice is

obtained ("IcesHCR").

Names of the object returned by FLBEIA
names(s0)

The default plot for FLBiol defined in FLCore
plot(s0$biols[[1]])

Extract reference points for summaries
s0_brps <- extractBRP(oneAdvC, stkn = names(oneBio))

Create summary data frames (biological, economic, and catch)
proj.yr <- 2013
s0_sum <- bioSum(s0, brp = s0_brps)

FLBEIA 47

s0$fleets$fl1 <- setUnitsNA(s0$fleets$fl1) # set units to NA to avoid errors in fltSum
s0_flt <- fltSum(s0)
s0_fltStk <- fltStkSum(s0)

Create several plots and save them in the working directory using 'pdf' format and
's0' suffix in the name.

plotFLBiols(s0$biols, pdfnm='s0', ss = 'all')
plotFLFleets(s0$fleets, pdfnm='s0', ss = 'all')
plotEco(s0, pdfnm='s0')
plotfltStkSum(s0, pdfnm='s0')

#--
Example with several iterations: oneIters
#--

Load the same data set as before but with 3 iterations.
Run FLBEIA and plot the results

data(oneIt)

s1 <- FLBEIA(biols = oneItBio, # FLBiols object with one FLBiol element for stk1.
SRs = oneItSR, # A list with one FLSRsim object for stk1.
BDs = NULL, # No Biomass Dynamic populations in this case.

fleets = oneItFl, # FLFleets object with on fleet.
covars = oneItCv, # covars not used

indices = NULL, # indices not used
advice = oneItAdv, # A list with two elements 'TAC' and 'quota.share'

main.ctrl = oneItMainC, # A list with one element to define the start and end of
the simulation.

biols.ctrl = oneItBioC, # A list with one element to select the model to simulate
the stock dynamics.

fleets.ctrl = oneItFlC, # A list with several elements to select fleet dynamic
models and store additional parameters.

covars.ctrl = oneItCvC, # covars control not used
obs.ctrl = oneItObsC, # A list with one element to define how the stock observed

("PerfectObs").
assess.ctrl = oneItAssC, # A list with one element to define how the stock

assessment model used ("NoAssessment").
advice.ctrl = oneItAdvC) # A list with one element to define how the TAC advice is

obtained ("IcesHCR").

Names of the object returned by FLBEIA
names(s1)

The default plot for FLBiol defined in FLCore
plot(s1$biols[[1]])

Extract reference points for summaries
s1_brps <- extractBRP(oneItAdvC, stkn = names(oneItBio))

48 FLBEIA

Create summary data frames (biological, economic, and catch)
proj.yr <- 2013
s1_bio <- bioSum(s1, brp = s1_brps)
s1$fleets$fl1 <- setUnitsNA(s1$fleets$fl1) # set units to NA to avoid errors in fltSum
s1_flt <- fltSum(s1)
s1_fltStk <- fltStkSum(s1)

s1_bioQ <- bioSumQ(s1_bio)
s1_fltQ <- fltSumQ(s1_flt)
s1_fltStkQ <- fltStkSumQ(s1_fltStk)

s1b_bio <- bioSum(s1, long = FALSE)
s1b_flt <- fltSum(s1, long = FALSE)
s1b_fltStk <- fltStkSum(s1, long = FALSE)

s1b_fltQ <- bioSumQ(s1b_bio)
s1b_fltQ <- fltSumQ(s1b_flt)
s1b_fltStkQ <- fltStkSumQ(s1b_fltStk)

Create several plots and save them in the working directory using 'pdf' format and
's1' suffix in the name.

plotFLBiols(s1$biols, pdfnm='s1', ss = 'all')
plotFLFleets(s1$fleets, pdfnm='s1', ss = 'all')
plotEco(s1, pdfnm='s1')
plotfltStkSum(s1, pdfnm='s1')

#--
Example with 2 stock, 2 Fleets, 4 seasons and 1 iteration: multi
#--

Load the multi data set. This dataset has 2 stocks, one stk1 is
age structured and the second one stk2 is aggregated in biomass.

data(multi)

Run FLBEIA.

s2 <- FLBEIA(biols = multiBio, # FLBiols object with 2 FLBiol element for stk1.
SRs = multiSR, # A list with 1 FLSRsim object for stk1.
BDs = multiBD, # A list with 1 FLBDSim object for stk2.

fleets = multiFl, # FLFleets object with on fleet.
covars = multiCv, # covars not used

indices = NULL, # indices not used
advice = multiAdv, # A list with two elements 'TAC' and 'quota.share'

main.ctrl = multiMainC, # A list with one element to define the start and end
of the simulation.

biols.ctrl = multiBioC, # A list with one element to select the model to simulate
the stock dynamics.

fleets.ctrl = multiFlC, # A list with several elements to select fleet dynamic
models and store additional parameters.

covars.ctrl = multiCvC, # covars control not used

FLCatchesExt 49

obs.ctrl = multiObsC, # A list with one element to define how the stock observed
("PerfectObs").

assess.ctrl = multiAssC, # A list with one element to define how the stock
assessment model used ("NoAssessment").

advice.ctrl = multiAdvC) # A list with one element to define how the TAC advice is
obtained ("IcesHCR").

Names of the object returned by FLBEIA
names(s2)

The default plot for FLBiol defined in FLCore
plot(s2$biols[[1]])

Extract reference points for summaries
s2_brps <- extractBRP(multiAdvC, stkn = names(multiBio))

Create summary data frames (biological, economic, and catch)

s2_sum <- bioSum(s2, brp = s2_brps)
for (fl in names(s2$fleets)) # set units to NA to avoid errors in fltSum

s2$fleets[[fl]] <- setUnitsNA(s2$fleets[[fl]])
s2_flt <- fltSum(s2)

s2b_flt <- fltSum(s2, byyear = FALSE)

s2_fltStk <- fltStkSum(s2)

Create several plots and save them in the working directory using 'pdf' format and
's2' suffix in the name.

plotFLBiols(s2$biols, pdfnm='s2', ss = 2)
plotFLFleets(s2$fleets, pdfnm='s2', ss = 2)
plotEco(s2, pdfnm='s2')
plotfltStkSum(s2, pdfnm='s2')

End(Not run)

FLCatchesExt Class FLCatchesExt

Description

A list of FLCatchExt objects.

Usage

vFLCs(object)

50 FLCatchesExt

S4 method for signature 'ANY'
FLCatchesExt(object, ...)

S4 method for signature 'missing'
FLCatchesExt(object, ...)

S4 method for signature 'list'
FLCatchesExt(object)

is.FLCatchesExt(object, ...)

S4 method for signature 'ANY'
is.FLCatchesExt(object, ...)

S4 method for signature 'FLCatchesExt'
catchNames(object)

S4 method for signature 'FLMetierExt'
catchNames(object)

S4 method for signature 'FLMetiersExt'
catchNames(object)

S4 method for signature 'FLFleetExt'
catchNames(object)

S4 method for signature 'FLFleetsExt'
catchNames(object)

Arguments

object An object of class FLCatchExt, list or missing.

... Other objects to be assigned by name to the class slots.

Slots

.Data Internal S4 data representation, of class list.

desc As textual description of the object contents

lock Can the object be extended/trimmed? TRUE or FALSE.

names A character vector for the element names

Author(s)

The FLBEIA Team

See Also

FLlst, list, vector, FLCatchExt

FLCatchExt 51

FLCatchExt FLCatchExt class and the methods to construct it.

Description

It extends the FLCatch class defined in FLFleet package. The FLCatch class includes two extra
slots alpha and beta used in the Cobb-Douglas production functions.

Usage

S4 method for signature 'FLQuant'
FLCatchExt(object, range = "missing", name = "NA", desc = character(0), ...)

S4 method for signature 'missing'
FLCatchExt(object, ...)

S4 method for signature 'FLCatchExt,ANY,ANY,ANY'
x[i, j, k, l, m, n, ..., drop = FALSE]

S4 replacement method for signature 'FLCatchExt,ANY,ANY,FLCatchExt'
x[i, j, k, l, m, n, ...] <- value

catchNames(object, ...) <- value

S4 method for signature 'FLCatchExt,FLCatchExt'
addFLCatch(e1, e2)

S4 method for signature 'FLCatchExt'
catchNames(object)

S4 replacement method for signature 'FLCatchExt,character'
catchNames(object) <- value

Arguments

object, x An object of class FLQuant, missing or FLCatchExt.

range Numerical vector with min, max, plusgroup, minyear and maxyear elements as
in FLStock object.

name The name of the stock.

desc The description of the object.

... Other objects to be assigned by name to the class slots.

i, j, k, l, m, n subindices

drop logical. Should the dimesions be dropped?

value Value or values to be assigned to the particular FLQuant or FLCatchExt slot.

e1, e2 FLCatchExt objects, where e2 is incorporated into e1 (see addFLCatch).

52 FLFleetExt

Details

The FLCatchExt object contains a representation of the catch of a fish stock as constructed for the
purposes of fleet dynamic modelling. This includes information on removals (i.e. landings and
discards), selectivity, weight, price and catch production parameters (catchability and elasticities).

Value

The constructors return an object of class FLCatchExt.

Slots

landings An FLQuant with the total landings in weight of the stock.

landings.n An FLQuant with the landings in numbers at age of the stock.

landings.wt An FLQuant with the weight at age of the landings.

discards An FLQuant with the total discards in weight of the stock.

discards.n An FLQuant with the discards in numbers at age of the stock.

discards.wt An FLQuant with the weight at age of the discards.

landings.sel,discards.sel An FLQuant with the landing/discard ogive of the metier for this
stock (i.e. landings.sel corresponds to the proportion of catches landed). Elements must be
between 0 and 1, with discards.sel = 1-landings.sel.

catch.q An FLQuant with the catchability at age of the stock for the corresponding metier. This
is the catchability used in the catch production model.

price An FLQuant with the price at age of the stock.

alpha An FLQuant with the elasticity parameter at age of the stock for the corresponding metier.
This is one of the parameters used in the catch production model.

beta An FLQuant with the elasticity parameter at age of the stock for the corresponding metier.
This is one of the parameters used in the catch production model.

name The name of the stock.

desc A description of the object.

range The range as in other FLR objects: c("min","max","plusgroup","minyear","maxyear").

FLFleetExt FLFleetExt class and the methods to construct it.

Description

It extends the FLFleetExt class defined in FLFleet package. The only difference is that that the
metiers slot is a FLMetiersExt object.

FLFleetExt 53

Usage

S4 method for signature 'FLMetiersExt'
FLFleetExt(object, ...)

S4 method for signature 'FLMetierExt'
FLFleetExt(object, ...)

S4 method for signature 'FLCatchesExt'
FLFleetExt(object, ...)

S4 method for signature 'FLCatchExt'
FLFleetExt(object, ...)

S4 method for signature 'FLFleetExt'
FLFleetExt(object, metier, catch, ...)

S4 method for signature 'missing'
FLFleetExt(object, ...)

S4 method for signature 'FLFleetExt,ANY,missing,ANY'
x[i, drop = FALSE]

S4 method for signature 'FLFleetExt,ANY,ANY,ANY'
x[i, j, drop = FALSE]

S4 method for signature 'FLFleetExt,ANY,missing'
x[[i, drop = FALSE]]

Arguments

object, x An object of class FLQuant, missing, FLFleetExt, FLCatchExt, FLCatchesExt
or FLMetierExt.

... Other objects to be assigned by name to the class slots

metier A name of one of the elements in FLMetiersExt object.

catch A name of one of the elements in FLCatchesExt object.

i, j subindices.

drop If TRUE, deletes the dimensions of an array which have only one level.

Details

The FLFleetExt object contains a representation of a fishing fleet as constructed for the purposes
of fleet dynamic modelling. This includes information on effort, fixed-cost, capacity, crew-share,
metiers and variable costs.

Value

The constructors return an object of class FLFleetExt.

54 FLFleetsExt

Slots

effort An FLQuant with the effort of the fleet. The effort can have any units (e.g. number of
fishing days, trips, hooks,...)

fcost An FLQuant with the fixed costs of the fleet. These costs should be given by vessel and the
number of vessels by fleet must be included in the covars object.

capacity An FLQuant with the capacity of the fleet. Same units as in slot effort must be used.

crewshare An FLQuant with the crewshare of the fleet. Where crewshare is the percentage of
revenues that goes to the crew.

metiers A FLMetiersExt with information on the fleet’s metiers.

name The name of the stock.

desc A description of the object.

range The range as in other FLR objects: c("min","max","plusgroup","minyear","maxyear").

FLFleetsExt Class FLFleetsExt

Description

A list of FLFleetExt objects.

Usage

vFLFs(object)

S4 method for signature 'ANY'
FLFleetsExt(object, ...)

S4 method for signature 'missing'
FLFleetsExt(object, ...)

S4 method for signature 'list'
FLFleetsExt(object)

is.FLFleetsExt(object, ...)

S4 method for signature 'ANY'
is.FLFleetsExt(object, ...)

Arguments

object An object of class FLFleetExt, list or missing.

... Other objects to be assigned by name to the class slots.

FLMetierExt 55

Slots

.Data Internal S4 data representation, of class list.

desc As textual description of the object contents

lock Can the object be extended/trimmed? TRUE or FALSE.

names A character vector for the element names

Author(s)

The FLBEIA Team

See Also

FLlst, list, vector, FLFleetExt

FLMetierExt FLMetierExt class and the methods to construct it.

Description

It extends the FLMetier class defined in FLFleet package. The only difference is that that the catches
slot is a FLCatchesExt object.

Usage

S4 method for signature 'FLCatchExt'
FLMetierExt(catches, gear = "NA", ...)

S4 method for signature 'FLCatchesExt'
FLMetierExt(catches, gear = "NA", ...)

S4 method for signature 'FLQuant'
FLMetierExt(catches, gear = "NA", ...)

S4 method for signature 'missing'
FLMetierExt(catches, gear = "NA", ...)

S4 method for signature 'FLMetierExt,ANY,missing,ANY'
x[i, drop = FALSE]

S4 method for signature 'FLMetierExt,ANY,missing'
x[[i, drop = FALSE]]

56 FLMetiersExt

Arguments

catches, x An object of class FLQuant, missing or FLCatchExt.

gear A character vector with the name of the gear used in the metier.

... Other objects to be assigned by name to the class slots

i subindices.

drop If TRUE, deletes the dimensions of an array which have only one level.

Details

The FLMetierExt object contains a representation of the metier of a fishing fleet as constructed
for the purposes of fleet dynamic modelling. This includes information on effortshare and variable
costs.

Value

The constructors return an object of class FLMetierExt.

Slots

gear A character with the gear name of a fleet’s metier.

effshare An FLQuant with the effort share of a fleet’s metier relative to fleet’s total effort (the
sum of all metiers effshares for a fleet must sum 1).

vcost An FLQuant with the varible costs of a fleet’s metier. These costs should be given by vessel
and based on the effort units used for the fleet’s effort (within the FLFleetExt object). The
number of vessels by fleet must be included in the covars object.

catches A FLCatchesExt with information on the fleet’s metier catches.

name The name of the stock.

desc A description of the object.

range The range as in other FLR objects: c("min","max","plusgroup","minyear","maxyear").

FLMetiersExt Class FLMetiersExt

Description

A list of FLMetierExt objects.

FLSRsim 57

Usage

vFLMs(object)

S4 method for signature 'ANY'
FLMetiersExt(object, ...)

S4 method for signature 'missing'
FLMetiersExt(object, ...)

S4 method for signature 'list'
FLMetiersExt(object)

is.FLMetiersExt(object, ...)

S4 method for signature 'ANY'
is.FLMetiersExt(object, ...)

Arguments

object An object of class FLMetierExt, list or missing.

... Other objects to be assigned by name to the class slots.

Slots

.Data Internal S4 data representation, of class list.

desc As textual description of the object contents

lock Can the object be extended/trimmed? TRUE or FALSE.

names A character vector for the element names

Author(s)

The FLBEIA Team

See Also

FLlst, list, vector, FLMetierExt

FLSRsim FLSRsim class and methods

Description

This class is used to store the necessary information to simulate the recruitment process within
FLBEIA.

58 joinIter

Arguments

... Any of the slots in FLSRsim class.

Details

The FLSRsim class contains a representation of the recruitment process of a fish stock. This in-
cludes information on recruitment, ssb, recruitment model, uncertainty and distribution of the re-
cruitment along seasons. The slots in this class:

Value

An object of class FLSRsim.

Slots

rec An FLQuant with to store the recruitment.

ssb An FLQuant with to store the ssb.

covar An FLQuants to store the covariates considered in the stock-recruitment model, one FQuant
per covariate.

uncertainty An FLQuant with to store the uncertainty that is multiplied to the recruitment point
estimate in each step of the simulation.

proportion An FLQuant with values between 0 and 1 to indicate how the recruitment in each of
the time steps is distributed along season.

model A character with the name of the model to simulate the recruitment process.

params An array with dimensions [number of params,number of years,number of seasons,number
of iteration].

timelag A matrix [2, number of seasons]. The element (1,j) indicates the time lag between the
spawning and recruitment year and the element (2,j) the season in which the recruitment was
spawn.

name A character with the name of the stock.

desc A description of the object.

range A numeric vector with c(min, max,plusgroup, minyear, maxyear) as in the rest of the FLR
objects.

joinIter Joins the iterations of several FLBEIA outputs

Description

joinIter function allows to join different outputs of FBEIA simulations. For example when simu-
lations are run iteration by iteration separately, with this function we can merged all the iterations
into one FLBEIA output object.

plotbioSum 59

Usage

joinIter(
objnam,
files,
directory = NULL,
Niters = 1,
elements = "all",
advice.ext = "TAC",
fleets.ctrl.ext = "seasonal.share"

)

Arguments

objnam Character. The name of the object that will be joined. The object must be the
output of FLBEIA function.

files A character vector with the names of the files from which objnam will be taken.
directory The directory were the files are stored. Default value is the current directory.
Niters A numeric vector with the number of iterations per object. If length=1, then it

is assumed that all objects have the same number of iterations.
elements The elements of the objects that must be joined. The default is to join all the

objects.
advice.ext Character. The element from advice object that will be replaced. Default is

’TAC’.
fleets.ctrl.ext

Character. The element from fleets.ctrl object that will be replaced. Default
is ’seasonal.share’.

Value

A new FLBEIA output object with all the iterations joined.

Note

The files must contain a single object (named as objnam value).

plotbioSum Summary plots of the FLBEIA output

Description

Summarize the results in a plot.

Usage

plotbioSum(obj, stk.nam, Blim = NA, Bpa = NA, proj.yr = NA)

plotfltSum(obj, flt.nam, proj.yr = NA)

60 plotbioSum

Arguments

obj An object with the same format as bioSum and fltSum outputs, respectively.

stk.nam Character with the name of the stock for which summary information will be
plotted. If not defined, then the first one in obj will be selected by default.

Blim Numeric. Blim reference point for the stock (optional argument).=NA, Bpa=NA,
proj.yr=NA)

Bpa Numeric. Bpa reference point for the stock (optional argument).

proj.yr Numeric. Year in which projection period starts (optional argument).

flt.nam Character with the name of the fleet for which summary information will be
plotted. If not defined, then the first one in obj will be selected by default.

Details

• plotbioSum: Plot summarising information on stock. With one plot for each of the following
indicators: "catch", "rec", "f" and "ssb". Input object should have the same format as the
output of bioSum function.

• plotfltSum: Plot summarising information on fleet’s economic indicators. With one plot for
each of the following indicators: "catch", "effort", "grossValue" and "grossSurplus". Input
object should have the same format as the output of fltSum function.

Value

Plot.

Examples

Not run:

library(FLBEIA)

Apply the summary plots to the examples runs in FLBEIA help page.

data(res_flbeia)
#--
Example One: One stock, one fleet, one iter.
#--

Biological indicators.
plotbioSum(bioSum(oneRes), Blim=800, Bpa=1200, proj.yr=2010) # bioSum output in wide format
plotbioSum(bioSum(oneRes, long = FALSE)) # bioSum output in long format
plotbioSum(bioSum(oneRes), stk.nam='stk0') # if incorrect name for the stock

Indicators at fleet level.
plotfltSum(fltSum(oneRes), proj.yr=2010) # fltSum output in wide format
plotfltSum(fltSum(oneRes, long = FALSE)) # fltSum output in long format
plotfltSum(fltSum(oneRes), flt.nam='stk1') # if incorrect name for the fleet
plotfltSum(fltSum(oneRes, byyear = FALSE)) # although seasonal disagregation,

it is summarised by year

plotBRPsson 61

#--
Example OneIters: As one but with iterations.
#--

Biological indicators.
plotbioSum(bioSum(s1), Blim=800, Bpa=1200, proj.yr=2010) # bioSum output in wide format
plotbioSum(bioSum(s1, long = FALSE)) # bioSum output in long format
plotbioSum(bioSum(s1), stk.nam='stk0') # if incorrect name for the stock

Indicators at fleet level.
plotfltSum(fltSum(s1), proj.yr=2010) # fltSum output in wide format
plotfltSum(fltSum(s1, long = FALSE)) # fltSum output in long format
plotfltSum(fltSum(s1), flt.nam='stk1') # if incorrect name for the fleet
plotfltSum(fltSum(s1, byyear = FALSE)) # although seasonal disagregation,

it is summarised by year

also possible to plot information on various scenarios
sc11_bio <- bioSum(s1)
sc12_bio <- bioSum(s1, scenario='alt'); sc12_bio$value <- sc12_bio$value*1.05
plotbioSum(rbind(sc11_bio, sc12_bio), Blim=800, Bpa=1200, proj.yr=2010)

#--
Example Multi: Two stock, two fleet, four iters.
#--

for (st in names(s2$stocks)) # one plot for each stock
plotbioSum(bioSum(s2, scenario='s2'), stk.nam=st, proj.yr=2010)

for (fl in names(s2$fleets)) # one plot for each fleet
plotfltSum(fltSum(s2, scenario='s2'), flt.nam=fl, proj.yr=2010)

End(Not run)

plotBRPsson YPR plots for a seasonal model

Description

Function for generating YPR plots for reference points when having a seasonal model

Usage

plotBRPsson(obj, pdfnm = "Fbar_vs_SPR.pdf")

Arguments

obj The output of brpsson function or a data.frame with the same structure as the
runs object in the output list of brpsson function.

pdfnm The name of the pdf document where plots are going to be saved.

62 plotEco

Value

A pdf for each stock with plots.

See Also

brpsson

plotEco Plots with fleets data

Description

Return a pdf with plots using FLBEIA object (FLFleets and covars).

Usage

plotEco(obj, probs = c(0.95, 0.5, 0.05), pdfnm = "bc")

Arguments

obj An FLBEIA object.

probs A numeric vector with the probabilities used to calculate the quantiles.

pdfnm The name for the pdf document will be "Eco" and pdfnm separated by a line.

Value

A pdf with capacity, costs, effort, profits by fleet.

Examples

Not run:
library(FLBEIA)
library(ggplot2)

data(res_flbeia)
plotEco(oneRes, pdfnm='one')

End(Not run)

plotFLBiols 63

plotFLBiols Plots with biological data

Description

For each stock, return a pdf with plots using FLBiols object.

Usage

plotFLBiols(biols, probs = c(0.95, 0.5, 0.05), pdfnm = "bc", u = 1, ss = 1)

Arguments

biols A FLBiols object

probs a numeric vector with the probabilities used to calculate the quantiles.

pdfnm The name for the pdf document will be stock’s name and pdfnm separated by a
line.

Details

• Each pdf contains biomass in numbers at age, mean weight at age, fecundity, natural mortality,
maturity, spawning, recruitment and spawning stock biomass

Value

A pdf for each stock with plots.

Examples

Not run:
library(FLBEIA)
library(ggplot2)
data(res_flbeia)
plotFLBiols(oneRes$biols, pdfnm='oneRes')

End(Not run)

64 plotFLFleets

plotFLFleets Plots with fleets data

Description

For each fleet, return a pdf with plots using FLFleets object.

Usage

plotFLFleets(fleets, probs = c(0.95, 0.5, 0.05), pdfnm = "bc", u = 1, ss = 1)

Arguments

fleets A FLFleets object.

probs A numeric vector with the probabilities used to calculate the quantiles.

pdfnm The name for the pdf document will be the fleet’s name and pdfnm separated by
a line.

Details

For each fleet, the pdf contains plots of:

• Catch, discards, landings, capacity, crewshare, effort, fcost, effshare

• For each metier: landings and discards at age in numbers and mean weight, alpha, beta and
catch.q

Value

A pdf for each fleet with plots.

Examples

Not run:
library(FLBEIA)
library(ggplot2)
data(res_flbeia)
plotFLFleets(oneRes$fleets,pdfnm='oneFl')

End(Not run)

plotfltStkSum 65

plotfltStkSum Plots with fltStkSum data

Description

Return a pdf with plots with the outputs fltStkSum, usint the output of FLBEIA.

Usage

plotfltStkSum(obj, pdfnm)

Arguments

obj FLBEIA output

pdfnm The name for the pdf document will be ’fltStkSum-’ and pdfnm.

Value

One pdf with plots on landings, discards,catch,price,quotaUpt,tacshare,discRat,quota by fleet and
stock.

Examples

Not run:
library(FLBEIA)
library(ggplot2)
data(res_flbeia)
plotfltStkSum(obj=oneRes,pdfnm = "oneRes")

End(Not run)

revenue_flbeia Economic summary functions.

Description

These functions provide summary results of costs, prices and revenues. Provided data can be
dessagregated by fleet or by metier depending on the selected function.

66 segremix

Usage

revenue_flbeia(fleet)

costs_flbeia(fleet, covars, flnm = NULL)

totvcost_flbeia(fleet)

totfcost_flbeia(fleet, covars, flnm = NULL)

price_flbeia(fleet, stock)

Arguments

fleet An element of FLfleets object.
covars List of FLQuants with information on covariates.
flnm Names of the fleets.
stock An FLStock object.

Details

• revenue_flbeia computes the revenue by fleet and metier. The revenue is computed as landings
(weight) multiplied by the price.

• costs_flbeia computes total costs as the sum of fixed and variable costs.
• totvcost_flbeia computes the variable costs including crew share costs .
• totfcost_flbeia computes the total costs by vessel.
• price_flbeia computes the price by stock.

segremix Stock-Recruitment models in FLBEIA: segrexmix - Mixture of 2 seg-
mented regression stock-recruitment models fit

Description

Model formulation:

Usage

segregmix()

Details

R = ifelse(S ≤ b, aS, ifelse(S ≤ B, ab,ABuncAdd))

R = ifelse(S <= b, a*S, ifelse(S <= B, a*b, A*B*uncAdd)) a is the slope of the recruitment for
stock levels at or below b, ab is the mean recruitment for stock levels above b and at or below B,
and ABuncAdd is the mean recruitment for stock levels above B. Where a, b, A, B > 0.

Additional stock-recruitment (SR) models to the ones provided in FLCore package.

SelAtAge 67

Author(s)

The FLBEIA Team

See Also

SRModels, FLSR, FLModel

SelAtAge Estimate selectivity at age

Description

Estimates selectivity at age of an stock by a fleet and metier.

Usage

SelAtAge(
biols,
fleets,
flnm = 1,
mtnm = 1,
stnm = 1,
years,
iter = NULL,
restriction = 1,
ntrials = 3

)

Arguments

biols A FLBiols object.

fleets A FLFleetsExt object.

flnm A character vector with the name of the fleet for which you want to calculate
selectivity.

mtnm A character vector with the name of the metier for which you want to calculate
selectivity.

stnm A character vector with the name of the stock for which you want to calculate
selectivity.

years A character vector with the name of the years used to calculate selectivity.

iter Numeric vector with the specific iterations to be consider. Default is taking all
iterations.

restriction If restriction = 1 => sum(Sa) = 1, whereas if restriction = 2 => max(Sa) = 1.
Default value is 1.

ntrials Numeric. If ntrials > 1, process success is checked.

68 SelAtAge

Details

To calculate selectivity at age, the following formula is used:

Ca,f,m =
Cf,m

sumi=a0,...a+Si,f,m ·Bi
· Sa,f,m ·Ba

Where:

• a: age.

• f: fleet.

• m: metier.

• i: susbscript of age.

• Sa,f,m: selectivity at age ’a’ for fleet ’f’ and metier ’m’.

• Ca,f,m: catch (in weight) at age ’a’ for fleet ’f’ and metier ’m’.

• Cf,m: total catch for fleet ’f’ and metier ’m’.

• Ba: biomass (in weight) at age.

Consult FLBEIA manual to see the derivation of the formula.

The equation above is nonlinear and therefore we cannot find an analytical expression for the selec-
tivity. Rewriting the equation above for each ’a’ we have de following equation:

sumi=a0,...a+Si,f,m ·Bi −
Cf,m

Ca,f,m
·Ba · Sa,f,m

Thus we have a system of linear equations being Sa0fm,...,Sa+fm the unknown variables. The
problem is that the equations in the system are not independent. Therefore, we have to remove one
equation to get a system of independent equations. Furthermore, we have to add a constraint (an
equation) to be able to solve the system.

To make sure that output is correct, we solve the sistem for each year and season several times
(the number is set in ntrials), removing a different equation each time. Alway using the same
constraint (restriction=1): sumi=a0,...a+Si,f,m = 1 Finally, we compare the values of Si,f,m

and we check if they are the same.

Value

A FLQuant with selectivity at age values in years. The rest of the years have value 0 for all ages.

https://github.com/flr/FLBEIA/blob/master/inst/doc/FLBEIA_manual.pdf

setUnitsNA 69

setUnitsNA Method setUnitsNA

Description

Function to remove the units from the FLQuants of an object

Usage

setUnitsNA(object)

S4 method for signature 'FLBiol'
setUnitsNA(object)

S4 method for signature 'FLBiols'
setUnitsNA(object)

S4 method for signature 'FLFleetExt'
setUnitsNA(object)

S4 method for signature 'FLFleetsExt'
setUnitsNA(object)

Arguments

object An object of class FLBiol, FLBiols, FLFleetExt or FLFleetsExt object.

Value

The same object with the units equal to NA in all the FLQuant slots.

Examples

data(one)

st <- setUnitsNA(oneBio)
fl <- setUnitsNA(oneFl)

data(multi)

biols <- setUnitsNA(multiBio)
fleets <- setUnitsNA(multiFl)

data(res_flbeia)

res_biols <- setUnitsNA(multiRes$biols)
res_fleets <- setUnitsNA(multiRes$fleets)

70 tlandStock

stock.fleetInfo stock.fleetInfo

Description

Indicates which stocks are caugth by each fleet-metier combination.

Usage

stock.fleetInfo(fleets)

Arguments

fleets is an objetc of class FLFleetsExt.

Value

Return a matrix with rownames equal to the stocks names and colnames equal to names of fleet and
metier. If element (i,j) is equal to 0, the stock (i) is not caught by fleet/metier (j).

Examples

Not run:
data(multi)
stock.fleetInfo(fl1)

End(Not run)

tlandStock Extract landings, discard or catch at age

Description

Extract landings, discards or catch at age of a stock from a FLFleetExt or FLFleetsExt object.

Usage

tlandStock(obj, stknm)

tdiscStock(obj, stknm)

landStock.f(obj, stock)

discStock.f(obj, stock)

catchStock.f(obj, stock)

tlandStock 71

landWStock.f(obj, stock)

discWStock.f(obj, stock)

catchWStock.f(obj, stock)

landStock(obj, stock)

discStock(obj, stock)

catchStock(obj, stock)

landWStock(obj, stock)

discWStock(obj, stock)

catchWStock(obj, stock)

Arguments

obj a FLFleetExt (.f) or FLFleetsExt object

stknm stock name

stock stock name

Details

• landStock.f: Extract total landings at age in numbers of a stock from a FLFleetExt obj.

• discStock.f: Extract total discards at age in numbers of a stock from a FLFleetExt obj.

• catchStock.f: Extract total catch at age in numbers of a stock from a FLFleetExt obj.

• landWStock.f: Extract total landings at age in weight of a stock from a FLFleetExt obj.

• discWStock.f: Extract total discards at age in weight of a stock from a FLFleetExt obj.

• catchWStock.f: Extract total catch at age in weight of a stock from a FLFleetExt obj.

• landStock: Extract total landings at age in numbers of a stock from a FLFleetExts obj.

• discStock: Extract total discards at age in numbers of a stock from a FLFleetExts obj.

• catchStock: Extract total catch at age in numbers of a stock from a FLFleetExts obj.

• landWStock: Extract total landings at age in weight of a stock from a FLFleetExts obj.

• discWStock: Extract total discards at age in weight of a stock from a FLFleetExts obj.

• catchWStock: Extract total catch at age in weight of a stock from a FLFleetExts obj.

• tlandStock: Total landings of a stock across fleets and metiers

• tdiscStock: Total discards of a stock across fleets and metiers

Value

A FLQuant object with landings, discards or catch (total or at age).

72 updateFLBiols

Examples

Not run:
library(FLBEIA)
data(one)
landWStock.f(oneFl$fl1,"stk1")
landWStock(oneFl,"stk1")

End(Not run)

unit2age Translates unit dimension in an FQuant into age dimension

Description

This function transforms a FQuant with several ’unit’ dimension into an array an unique ’unit’
dimension and no ’area’ dimension. Moving ’unit’ to ’age’ dimension. This is usefull when we use
the ’unit’ dimension to store the different seasonal cohorts.

Usage

unit2age(Q)

Arguments

Q A FLQuant. The object must be the output of FLBEIA function.

Value

A 4-dimensional array with length c(d[1]*d[3], d[2], d[4], d[6]), where d is the dimension of the
FLQuant.

Note

The files must contain a single object (named as objnam value).

updateFLBiols Update the FLBiols object to the FLCore 2.6

Description

Updates an old FLBiols (where slots fec and mat from each FLBiol are FLQuants), into the new
version of the class, where slots fec and mat are of class predictModel.

Usage

updateFLBiols(biols)

wtadStock 73

Arguments

biols A FLBiols object.

Value

A new FLBEIA output object with all the iterations joined.

See Also

predictModel

wtadStock Mean weight at age in discards for a stock across fleets and metiers

Description

Mean weight at age in discards for a stock across fleets and metiers

Usage

wtadStock(obj, stknm)

Arguments

obj An object of class FlFleetsExt.

stknm Character. The name of the stock for which we want to calculate mean weight-
at-age.

Value

A FLQuant with mean weight-at-age values.

See Also

wtalStock

74 wtalStock

wtalStock Mean weight at age in landings for a stock across fleets and metiers

Description

Mean weight at age in landings for a stock across fleets and metiers

Usage

wtalStock(obj, stknm)

Arguments

obj An object of class FlFleetsExt.

stknm Character. The name of the stock for which we want to calculate mean weight-
at-age.

Value

A FLQuant with mean weight-at-age values.

See Also

wtadStock

Index

∗ classes
FLCatchesExt, 49
FLFleetsExt, 54
FLMetiersExt, 56

∗ create.biol.arrays
create.biol.arrays, 24

∗ create.fleets.arrays
create.ecoData, 28
create.fleets.arrays, 29

∗ datasets
datasets, 38

∗ methods
setUnitsNA, 69

∗ setUnitsNA
setUnitsNA, 69

[,FLCatchExt,ANY,ANY,ANY-method
(FLCatchExt), 51

[,FLFleetExt,ANY,ANY,ANY-method
(FLFleetExt), 52

[,FLFleetExt,ANY,ANY-method
(FLFleetExt), 52

[,FLFleetExt,ANY,missing,ANY-method
(FLFleetExt), 52

[,FLFleetExt,ANY,missing-method
(FLFleetExt), 52

[,FLMetierExt,ANY,missing,ANY-method
(FLMetierExt), 55

[,FLMetierExt,ANY,missing-method
(FLMetierExt), 55

[<-,FLCatchExt,ANY,ANY,ANY-method
(FLCatchExt), 51

[<-,FLCatchExt,ANY,ANY,FLCatchExt-method
(FLCatchExt), 51

[[,FLFleetExt,ANY,missing-method
(FLFleetExt), 52

[[,FLMetierExt,ANY,missing-method
(FLMetierExt), 55

addFLCatch,FLCatchExt,FLCatchExt
(FLCatchExt), 51

addFLCatch,FLCatchExt,FLCatchExt-method
(FLCatchExt), 51

advSum (bioSum), 8
advSumQ (bioSum), 8
aneHCRE (annualTAC), 4
annexIVHCR (annualTAC), 4
annualTAC, 4

B_flbeia (ecoSum_damara), 40
bevholt, 39
biolfleets2flstock, 7
bioSum, 8, 42
bioSumQ (bioSum), 8
brpsson, 17, 62

C_flbeia (ecoSum_damara), 40
calculate.q.sel.flrObjs, 18
catch (datasets), 38
catchNames,FLCatchesExt (FLCatchesExt),

49
catchNames,FLCatchesExt-method

(FLCatchesExt), 49
catchNames,FLCatchExt (FLCatchExt), 51
catchNames,FLCatchExt-method

(FLCatchExt), 51
catchNames,FLFleetExt (FLCatchesExt), 49
catchNames,FLFleetExt-method

(FLCatchesExt), 49
catchNames,FLFleetsExt (FLCatchesExt),

49
catchNames,FLFleetsExt-method

(FLCatchesExt), 49
catchNames,FLMetierExt (FLCatchesExt),

49
catchNames,FLMetierExt-method

(FLCatchesExt), 49
catchNames,FLMetiersExt (FLCatchesExt),

49
catchNames,FLMetiersExt-method

(FLCatchesExt), 49

75

76 INDEX

catchNames<- (FLCatchExt), 51
catchNames<-,FLCatchExt,character

(FLCatchExt), 51
catchNames<-,FLCatchExt,character-method

(FLCatchExt), 51
catchStock (tlandStock), 70
catchWStock (tlandStock), 70
CFPMSYHCR (annualTAC), 4
checkAdvice (checkFLBEIAData), 19
checkBDs (checkFLBEIAData), 19
checkBiols (checkFLBEIAData), 19
checkFLBEIAData, 19
checkFleets (checkFLBEIAData), 19
checkObsctrl (checkFLBEIAData), 19
checkSRs (checkFLBEIAData), 19
costs_flbeia (revenue_flbeia), 65
create.advice.ctrl, 21
create.advice.data, 21
create.assess.ctrl, 22
create.BDs.data, 23
create.biol.arrays, 24, 28, 29, 32
create.biols.ctrl, 25
create.biols.data, 26
create.covars.ctrl, 27
create.ecoData, 28
create.fleets.arrays, 25, 29
create.fleets.ctrl, 32
create.fleets.data, 33
create.indices.data, 35
create.obs.ctrl, 36
create.SRs.data, 37

D_flbeia (ecoSum_damara), 40
data.frame, 40
datasets, 38
discStock (tlandStock), 70
discWStock (tlandStock), 70

ecoSum_damara, 40
evhoe (datasets), 38
extractBRP, 42

F2CatchHCR (annualTAC), 4
F_flbeia (ecoSum_damara), 40
FLBDsim, 43
FLBDsim-class (FLBDsim), 43
FLBEIA, 38–40, 44
FLBiol, 25
FLBiols, 38–40

FLCatchesExt, 49
FLCatchesExt,ANY (FLCatchesExt), 49
FLCatchesExt,ANY-method (FLCatchesExt),

49
FLCatchesExt,list (FLCatchesExt), 49
FLCatchesExt,list-method

(FLCatchesExt), 49
FLCatchesExt,missing (FLCatchesExt), 49
FLCatchesExt,missing-method

(FLCatchesExt), 49
FLCatchesExt-class (FLCatchesExt), 49
FLCatchExt, 50, 51
FLCatchExt,FLQuant-method (FLCatchExt),

51
FLCatchExt,missing-method (FLCatchExt),

51
FLCatchExt-class (FLCatchExt), 51
FLCatchExt-methods (FLCatchExt), 51
FLCatchExt-missing (FLCatchExt), 51
FLFleetExt, 52, 55
FLFleetExt,FLCatchesExt-method

(FLFleetExt), 52
FLFleetExt,FLCatchExt-method

(FLFleetExt), 52
FLFleetExt,FLFleetExt-method

(FLFleetExt), 52
FLFleetExt,FLFleetExt-missing

(FLFleetExt), 52
FLFleetExt,FLMetierExt-method

(FLFleetExt), 52
FLFleetExt,FLMetiersExt-method

(FLFleetExt), 52
FLFleetExt,missing-method (FLFleetExt),

52
FLFleetExt-class (FLFleetExt), 52
FLFleetExt-methods (FLFleetExt), 52
FLFleetsExt, 28, 32, 38–40, 54
FLFleetsExt,ANY (FLFleetsExt), 54
FLFleetsExt,ANY-method (FLFleetsExt), 54
FLFleetsExt,FLFleetExt-missing

(FLFleetsExt), 54
FLFleetsExt,list (FLFleetsExt), 54
FLFleetsExt,list-method (FLFleetsExt),

54
FLFleetsExt,missing-method

(FLFleetsExt), 54
FLFleetsExt-class (FLFleetsExt), 54
FLIndices, 38, 40

INDEX 77

FLlst, 50, 55, 57
FLMetierExt, 55, 57
FLMetierExt,FLCatchesExt-method

(FLMetierExt), 55
FLMetierExt,FLCatchExt-method

(FLMetierExt), 55
FLMetierExt,FLMetierExt-method

(FLMetierExt), 55
FLMetierExt,FLQuant-method

(FLMetierExt), 55
FLMetierExt,missing-method

(FLMetierExt), 55
FLMetierExt-class (FLMetierExt), 55
FLMetierExt-methods (FLMetierExt), 55
FLMetiersExt, 56
FLMetiersExt,ANY (FLMetiersExt), 56
FLMetiersExt,ANY-method (FLMetiersExt),

56
FLMetiersExt,FLMetiersExt-methods

(FLMetierExt), 55
FLMetiersExt,is.FLMetiersExt

(FLMetiersExt), 56
FLMetiersExt,is.FLMetiersExt,ANY

(FLMetiersExt), 56
FLMetiersExt,list (FLMetiersExt), 56
FLMetiersExt,list-method

(FLMetiersExt), 56
FLMetiersExt,missing (FLMetiersExt), 56
FLMetiersExt,missing-method

(FLMetiersExt), 56
FLMetiersExt-class (FLMetiersExt), 56
FLModel, 67
FLQuant, 40
FLQuant,FLCatchExt-method (FLCatchExt),

51
FLQuants, 38, 39
FLSR, 67
FLSRsim, 38–40, 57
FLSRsim-class (FLSRsim), 57
FLStock, 40
fltStkSum (bioSum), 8
fltStkSumQ (bioSum), 8
fltSum (bioSum), 8
fltSumQ (bioSum), 8
FroeseHCR (annualTAC), 4

ghlHCR (annualTAC), 4

IcesCat3HCR (annualTAC), 4

IcesCat3HCR_bsafe_hrcap (annualTAC), 4
IcesHCR (annualTAC), 4
is.FLCatchesExt (FLCatchesExt), 49
is.FLCatchesExt,ANY (FLCatchesExt), 49
is.FLCatchesExt,ANY-method

(FLCatchesExt), 49
is.FLFleetsExt (FLFleetsExt), 54
is.FLFleetsExt,ANY (FLFleetsExt), 54
is.FLFleetsExt,ANY-method

(FLFleetsExt), 54
is.FLMetiersExt (FLMetiersExt), 56
is.FLMetiersExt,ANY-method

(FLMetiersExt), 56

joinIter, 58

L_flbeia (ecoSum_damara), 40
landStock (tlandStock), 70
landWStock (tlandStock), 70
list, 50, 55, 57
little2011HCR (annualTAC), 4

MAPHCR (annualTAC), 4
mtStkSum (bioSum), 8
mtStkSumQ (bioSum), 8
mtSum (bioSum), 8
mtSumQ (bioSum), 8
multi (datasets), 38
multiAdv (datasets), 38
multiAdvC (datasets), 38
multiAssC (datasets), 38
multiBD (datasets), 38
multiBio (datasets), 38
multiBioC (datasets), 38
multiCv (datasets), 38
multiCvC (datasets), 38
multiFl (datasets), 38
multiFlC (datasets), 38
multiMainC (datasets), 38
multiObsC (datasets), 38
multiRes (datasets), 38
multiSR (datasets), 38
MultiStockHCR (annualTAC), 4
mur (datasets), 38

neaMAC_ltmp (annualTAC), 4
npv (bioSum), 8
npvQ (bioSum), 8

one (datasets), 38

78 INDEX

oneAdv (datasets), 38
oneAdvC (datasets), 38
oneAssC (datasets), 38
oneBio (datasets), 38
oneBioC (datasets), 38
oneCv (datasets), 38
oneCvC (datasets), 38
oneFl (datasets), 38
oneFlC (datasets), 38
oneIndAge (datasets), 38
oneIndBio (datasets), 38
oneIt (datasets), 38
oneItAdv (datasets), 38
oneItAdvC (datasets), 38
oneItAssC (datasets), 38
oneItBio (datasets), 38
oneItBioC (datasets), 38
oneItCv (datasets), 38
oneItCvC (datasets), 38
oneItFl (datasets), 38
oneItFlC (datasets), 38
oneItIndAge (datasets), 38
oneItIndBio (datasets), 38
oneItMainC (datasets), 38
oneItObsC (datasets), 38
oneItObsCIndAge (datasets), 38
oneItObsCIndBio (datasets), 38
oneItRes (datasets), 38
oneItSR (datasets), 38
oneMainC (datasets), 38
oneObsC (datasets), 38
oneObsCIndAge (datasets), 38
oneObsCIndBio (datasets), 38
oneRes (datasets), 38
oneSR (datasets), 38

pidHCR (annualTAC), 4
pidHCRItarg (annualTAC), 4
plotbioSum, 59
plotBRPsson, 18, 61
plotEco, 62
plotFLBiols, 63
plotFLFleets, 64
plotfltStkSum, 65
plotfltSum (plotbioSum), 59
predictModel, 73
price_flbeia (revenue_flbeia), 65

R_flbeia (ecoSum_damara), 40

res_flbeia (datasets), 38
revenue_flbeia, 65
riskSum (bioSum), 8

segregmix (segremix), 66
segremix, 66
SelAtAge, 67
setUnitsNA, 69
setUnitsNA,FLBiol-method (setUnitsNA),

69
setUnitsNA,FLBiols-method (setUnitsNA),

69
setUnitsNA,FLFleetExt-method

(setUnitsNA), 69
setUnitsNA,FLFleetsExt-method

(setUnitsNA), 69
setUnitsNA-methods (setUnitsNA), 69
SRModels, 67
SSB_flbeia (ecoSum_damara), 40
stock.fleetInfo, 70
summary_flbeia (ecoSum_damara), 40

tdiscStock (tlandStock), 70
tlandStock, 70
totfcost_flbeia (revenue_flbeia), 65
totvcost_flbeia (revenue_flbeia), 65

unit2age, 72
updateFLBiols, 72

vector, 50, 55, 57
vesselStkSum (bioSum), 8
vesselStkSumQ (bioSum), 8
vesselSum (bioSum), 8
vesselSumQ (bioSum), 8
vFLCs (FLCatchesExt), 49
vFLFs (FLFleetsExt), 54
vFLMs (FLMetiersExt), 56

wtadStock, 73, 74
wtalStock, 73, 74

	annualTAC
	biolfleets2flstock
	bioSum
	brpsson
	calculate.q.sel.flrObjs
	checkFLBEIAData
	create.advice.ctrl
	create.advice.data
	create.assess.ctrl
	create.BDs.data
	create.biol.arrays
	create.biols.ctrl
	create.biols.data
	create.covars.ctrl
	create.ecoData
	create.fleets.arrays
	create.fleets.ctrl
	create.fleets.data
	create.indices.data
	create.obs.ctrl
	create.SRs.data
	datasets
	ecoSum_damara
	extractBRP
	FLBDsim
	FLBEIA
	FLCatchesExt
	FLCatchExt
	FLFleetExt
	FLFleetsExt
	FLMetierExt
	FLMetiersExt
	FLSRsim
	joinIter
	plotbioSum
	plotBRPsson
	plotEco
	plotFLBiols
	plotFLFleets
	plotfltStkSum
	revenue_flbeia
	segremix
	SelAtAge
	setUnitsNA
	stock.fleetInfo
	tlandStock
	unit2age
	updateFLBiols
	wtadStock
	wtalStock
	Index

