Package 'FLRef'

Title: Reference point computation for advice rules
Description: Blah
Authors: Henning Winker [aut, cre]
Maintainer: Henning Winker <[email protected]>
License: EUPL
Version: 1.10.9
Built: 2024-11-07 05:58:24 UTC
Source: https://github.com/flr/FLRef

Help Index


ABItgt() Computes ABI for target F, e.g. ABImsy (Griffith et al. 2023)

Description

ABItgt() Computes ABI for target F, e.g. ABImsy (Griffith et al. 2023)

Usage

ABItgt(stock, ftgt = 0.2, thresh = 0.9, ...)

Arguments

stock

object of class FLStock

ftgt

target F at equilibrium, e.g. Fmsy

thresh

quantile ageref treshold, default 0.9

Value

*FLQuant*

Examples

data(ple4)
ABImsy = ABItgt(ple4,ftgt=0.22,thresh=0.9)
plot(ABImsy)+ylim(0,2)+
 geom_hline(yintercept = c(0.8,1),col=c(2,1),linetype=c(2,1))+ylab(expression(ABI[MSY]))

ALK function

Description

ALK function

Usage

ALK(N_a, iALK)

Arguments

N_a

numbers at age sample for single event

iALK

from iALK() outout

Value

FLPar of ALK


generates annual ALK sample with length stratified sampling

Description

generates annual ALK sample with length stratified sampling

Usage

alk.sample(lfds, alks, nbin = 20, n.sample = 1)

Arguments

lfds

length frequency *FLQuant*

alks

annual ALK proportions at age output form ALKs() *FLPars*

nbin

number of samples per length bin

n.sample

sample size of lfd

Value

FLPars of sampled ALK


annual ALK function

Description

annual ALK function

Usage

ALKs(object, iALK)

Arguments

object

FLQuant with numbers at age

iALK

from iALK() outout

Value

FLPars of ALK


applyALK function to length to age

Description

applyALK function to length to age

Usage

applyALK(lfds, alks)

Arguments

alks

*FLPars* annual ALKs

lfd

*FLQuant* with numbers at length

Value

FLQuant for numbers at age


asem2spm()

Description

asem2spm()

Usage

asem2spm(
  object,
  quant = c("vb", "ssb"),
  fmsy = NULL,
  rel = FALSE,
  spcurve = FALSE
)

Arguments

object

An *FLBRP*

quant

choose between vb and ssb

rel

if TRUE ratios are produced for spcurve

spcurve

if TRUE a data.frame is added

Value

prior means for r and m *FLPar*

Examples

data(ple4)
sr <- srrTMB(as.FLSR(ple4,model=bevholtSV),spr0=mean(spr0y(ple4)))
brp = FLBRP(ple4,sr)
asem2spm(brp)[1:4]
plotpf(brp)
plotpf(brp,rel=TRUE)

generates FLIndexBiomass with random observation error from an FLStock

Description

generates FLIndexBiomass with random observation error from an FLStock

Usage

bioidx.sim(object, sel = catch.sel(object), sigma = 0.2, q = 0.001)

Arguments

object

FLStock

sel

FLQuant with selectivity.pattern

sigma

observation error for log(index)

q

catchability coefficient for scaling

Value

FLIndexBiomass

Examples

data(ple4)
sel = newselex(catch.sel(ple4),FLPar(S50=1.5,S95=2.1,Smax=4.5,Dcv=1,Dmin=0.1))
ggplot(sel)+geom_line(aes(age,data))+ylab("Selectivity")+xlab("Age")
object = propagate(ple4,10)
sel = newselex(catch.sel(object),FLPar(S50=2.5,S95=3.2,Smax=3.5,Dcv=0.6,Dmin=0.2))
idx = bioidx.sim(object,sel=sel,q=0.0001)
# Checks
ggplot(idx@sel.pattern)+geom_line(aes(age,data))+ylab("Selectivity")+xlab("Age")
ggplot(idx@index)+geom_line(aes(year,data,col=ac(iter)))+theme(legend.position = "none")+ylab("Index")

blag()

Description

function to assign B[y+1] to B[y]. Warning correlation structure of B[y+1] and F[y] is meaningless

Usage

blag(mvn, verbose = TRUE)

Arguments

mvn

Value

output list of quant posteriors and mle's

Author(s)

Henning Winker (GFCM)


generates catch.n with lognormal annual and multinomial age composition observation error

Description

generates catch.n with lognormal annual and multinomial age composition observation error

Usage

ca.sim(object, ess = 200, what = c("catch", "landings", "discards")[1])

Arguments

object

FLQuant

ess

effective sample size for age composition

what

c("catch", "landings", "discards")

sel

FLQuant with selectivity.pattern e.g. catch.sel()

Value

FLQuant with catch.n samples

Examples

data(ple4)
object = propagate(ple4,10)
ca = ca.sim(object,ess=200)
# Checks
ggplot(ca)+geom_line(aes(year,data,col=ac(iter)))+facet_wrap(~age)+
theme(legend.position = "none")+ylab("Index")

computeFbrp() Computes biological reference points corresponding to the proxy Fbrp

Description

computeFbrp() Computes biological reference points corresponding to the proxy Fbrp

Usage

computeFbrp(
  stock,
  sr = "missing",
  proxy = NULL,
  x = NULL,
  blim = 0.1,
  type = c("b0", "btgt", "value"),
  btri = "missing",
  bpa = "missing",
  bthresh = "missing",
  verbose = T,
  fmax = 10,
  ...
)

Arguments

stock

object of class FLStock

sr

stock recruitment model of class FLSR

proxy

choice of Fmsy proxies (combinations permitted)

  • "sprx" spawning potential ratio spr/spr0 with basis x

  • "bx" SSB as fraction xSSB0

  • "f0.1" 10

  • "fe40" Patterns estimator for Fmsy

  • "msy" maximum surplus production (not defined for segreg)

  • numeric user value

x

basis in percent for sprx and bx, e.g. 40 for spr40

blim

values < 1 are taken as fraction to B0 and blim > 1 as absolute values unless specified otherwise

type

type of blim input, values < 1 are

  • "b0" fraction to B0

  • "btgt" fraction to Btarget (first occurring in proxy)

  • "value" absolute value

btri

Btrigger can specified as absolute value

bpa

Bpa can specified as absolute value

bthresh

Bthresh (GFCM) interchangeable use with Bpa

verbose
fmax

maximum Flim = max(Flim,fmax*Fbrp)

Value

brp object of class FLBRP with computed Fbrp reference points

Examples

data(ple4)
srr = srrTMB(as.FLSR(ple4,model=rickerSV),spr0=spr0y(ple4))
brp = computeFbrp(stock=ple4,sr=srr,proxy=c("sprx","f0.1"),blim=0.1,type="b0")
ploteq(brp,obs=TRUE,refpts="msy")

computeFbrps() Computes biological reference points corresponding to the proxy Fbrp

Description

computeFbrps() Computes biological reference points corresponding to the proxy Fbrp

Usage

computeFbrps(
  stock,
  sr = "missing",
  proxy = c("sprx", "bx", "all"),
  fmsy = FALSE,
  f0.1 = TRUE,
  fmax = 5,
  verbose = T,
  ...
)

Arguments

stock

object of class FLStock

sr

stock recruitment model of class FLSR

fmsy

if TRUE, Fmsy is computed (not suggest for segreg or geomean sr)

f0.1

if TRUE, F0.1 is computed

fmax

maximum Flim = minfmax*Fbrp)

verbose
proxies

choice of Fmsy proxies

  • "all" both sprx and bx

  • "sprx" spawning potential ratio spr/spr0 with basis x

  • "bx" SSB as fraction xSSB0

Value

brp object of class FLBRP with computed Fbrp reference points


Fbrp() Extract Fbrp based reference points from output of computeFbrp

Description

Fbrp() Extract Fbrp based reference points from output of computeFbrp

Usage

Fbrp(brp)

Arguments

brp

input of class FLBRP from ComputeFbrp

Value

FLPar object with computed Fbrp reference points


Fe40() Patterson estimator for Fmsy

Description

Fe40() Patterson estimator for Fmsy

Usage

Fe40(stock, nyears = 3)

Arguments

stock

input of class FLStock

nyears

number of years to average

Value

value


flr2stars()

Description

flr2stars()

Usage

flr2stars(object, quantiles = c(0.05, 0.95))

Arguments

object

of class FLStockR

quantities

default is 90CIs as c(0.05,0.95)

Value

STARS list with $timeseris and $refpts


Fmmy() Uses opt.bisect to derive the F at Maximum Median Yield from stochastic simulations

Description

Fmmy() Uses opt.bisect to derive the F at Maximum Median Yield from stochastic simulations

Usage

Fmmy(
  brp,
  sigmaR = 0.5,
  rho = 0,
  nyears = 100,
  iters = 250,
  yrs.eval = NULL,
  range = "missing",
  tol = 0.001,
  maxit = 15,
  verbose = TRUE
)

Arguments

brp

output object from computeFbrp() of class FLBRP

sigmaR

lognormal recruitment standard deviation

rho

AR1 recruitment autocorrelation coefficient

nyears

number of simulation years

iters

number simulation iterations

yrs.eval

last years to be used evaluation period, default nyears/2

range

range of Fbar value to be evaluated

tol

tolerance

maxit

number of steps

verbose

cat comments

Value

list of FLPar, FLStock and FLBRP objects

Examples

data(ple4)
bh = srrTMB(as.FLSR(ple4,model=bevholtSV),spr0=spr0y(ple4))
brp = computeFbrp(ple4,bh,proxy=c("bx","msy"),x=35,blim=0.1)
fmmy = Fmmy(brp,sigmaR=0.7,rho=0.3)
getF(fmmy) # FMMY value 
plotFsim(fmmy)
brpfmmy = computeFbrp(ple4,bh,proxy=getF(fmmy),blim=0.1)
fsim = Fsim(brpfmmy,sigmaR=0.7,rho=0.3)
plotFsim(fsim)

Calculates the Fbar value giving a maximum probability of ssb being below Blim of 5 percent

Description

Calculates the Fbar value giving a maximum probability of ssb being below Blim of 5 percent

Usage

Fp05(
  object,
  iters = "missing",
  range = "missing",
  tol = 0.001,
  maxit = 20,
  verbose = TRUE
)

Arguments

object

output from Fsim()

iters

Number of iterations, cannot exceed input object

range

range of Fbar value to be evaluated

verbose

Should progress be shown, TRUE.

Value

list

Examples

data(ple4)
bh = srrTMB(as.FLSR(ple4,model=bevholtSV),spr0=spr0y(ple4))
brp = computeFbrp(ple4,bh,proxy="bx",x=35,blim=0.2) # set Blim higher
fsim = Fsim(brp,sigmaR=0.7,rho=0.3,iters=500)
plotFsim(fsim)
fp.05 = Fp05(fsim)
plotFsim(fp.05,panels=c(2,4)) # black line is Fp0.05
getF(fp.05)

Fsim() Simulates stochastic stock dynamics under under constant Fbrp

Description

Fsim() Simulates stochastic stock dynamics under under constant Fbrp

Usage

Fsim(
  brp,
  Ftgt = NULL,
  sigmaR = 0.5,
  rho = 0,
  nyears = 100,
  iters = 250,
  yrs.eval = NULL,
  verbose = TRUE
)

Arguments

brp

output object from computeFbrp() of class FLBRP

sigmaR

lognormal recruitment standard deviation

rho

AR1 recruitment autocorrelation coefficient

nyears

number of simulation years

iters

number simulation iterations

yrs.eval

last years to be used evaluation period, default nyears/2

verbose

cat comments

Value

list of FLPar, FLStock and FLBRP objects

Examples

data(ple4)
hs = srrTMB(as.FLSR(ple4,model=segreg),spr0=spr0y(ple4),lplim=0.05,uplim=0.25)
blim = params(hs)[[2]]
brp = computeFbrp(ple4,hs,proxy=c("sprx","f0.1","msy"),x=40,blim=blim)
ploteq(brp)
fsim = Fsim(brp,sigmaR=0.7,rho=0.3)
plotFsim(fsim)
plotFsim(fsim,panels=2)

fudc()

Description

generates an up-down-constant F-pattern

Usage

fudc(
  object,
  fref = 0.2,
  fhi = 2.5,
  flo = 0.8,
  sigmaF = 0.2,
  breaks = c(0.5, 0.75)
)

Arguments

object

An *FLStock*

fref

reference denominator for fbar

fhi

factor for high F as fhi = fbar/fref

flo

factor for low F as flo = fbar/fref

sigmaF

variation on fbar

breaks

relative location of directional change

Value

FLQuant

Examples

data(ple4)
sr <- srrTMB(as.FLSR(ple4,model=bevholtSV),spr0=mean(spr0y(ple4)))
brp = computeFbrp(ple4,sr,proxy="msy")
fmsy = Fbrp(brp)["Fmsy"]
stki = propagate(ple4,100)
fy = fudc(ple4,fhi=2,flo=0.9,fref=fmsy,sigmaF=0)
fyi = fudc(stki,fhi=2,flo=0.9,fref=fmsy,sigmaF=0.2)
plot(fy,fyi)+ylab("F")
#Forcasting
om <- FLStockR(ffwd(stki,sr,fbar=fyi))
om@refpts = Fbrp(brp)
plotAdvice(window(om,start=1960))

Function to summarise forecast results

Description

Function to summarise forecast results

Usage

fwd2stars(object, eval.yrs = NULL, rel = TRUE)

Arguments

object

*FLStocks* with list of *FLStockR* objects

eval.yrs

evaluation years of forecast

rel

if TRUE ratios B/Btgt and F/Ftgt are shown

Value

data.frame


getF()

Description

Helper functio to extract F from various FLRef output

Usage

getF(x)

Arguments

x

output object from computeFbrp() of class FLBRP


huecol

Description

huecol

Usage

huecol(n, alpha = 1)

Arguments

n

number of colors

alpha

transluscency


inverse ALK function with lmin added to FLCore::invALK

Description

inverse ALK function with lmin added to FLCore::invALK

Usage

iALK(
  params,
  model = vonbert,
  age,
  cv = 0.1,
  lmin = 5,
  lmax = 1.2,
  bin = 1,
  max = ceiling(linf * lmax),
  reflen = NULL
)

Arguments

params

growth parameter, default FLPar(linf,k,t0)

model

growth model, only option currently vonbert

age

age vector

cv

of length-at-age

lmin

minimum length

lmax

maximum upper length specified lmax*linf

bin

length bin size, dafault 1

max

maximum size value

reflen

evokes fixed sd for L_a at sd = cv*reflen

timing

t0 assumed 1st January, default seq(0,11/12,1/12), but can be single event 0.5

unit

default is "cm"

Value

FLPar age-length matrix


generates FLIndex with lognormal annual and multinomial age composition observation error

Description

generates FLIndex with lognormal annual and multinomial age composition observation error

Usage

idx.sim(
  object,
  sel = catch.sel(object),
  ages = NULL,
  years = NULL,
  ess = 200,
  sigma = 0.2,
  q = 0.01
)

Arguments

object

FLStock

sel

FLQuant with selectivity.pattern

ages

define age range

years

define year range

ess

effective sample size for age composition sample

sigma

annual observation error for log(q)

q

catchability coefficient for scaling

Value

FLIndex

Examples

data(ple4)
sel = newselex(catch.sel(ple4),FLPar(S50=1.5,S95=2.1,Smax=4.5,Dcv=1,Dmin=0.1))
ggplot(sel)+geom_line(aes(age,data))+ylab("Selectivity")+xlab("Age")
object = propagate(ple4,10)
idx = idx.sim(object,sel=sel,ess=200,sigma=0.2,q=0.01,years=1994:2017)
# Checks
ggplot(idx@sel.pattern)+geom_line(aes(age,data))+ylab("Selectivity")+xlab("Age")
ggplot(idx@index)+geom_line(aes(year,data,col=ac(iter)))+facet_wrap(~age,scales="free_y")+
theme(legend.position = "none")+ylab("Index")

jabba2FLStockR()

Description

jabba2FLStockR()

Usage

jabba2FLStockR(jabba, blim = 0.3, bthr = 0.5, thin = 10, rel = FALSE)

Arguments

jabba

fit from JABBA fit_jabba() or jabba$kbtrj

blim

biomass limit reference point as fraction of Bmsy

thin

thinnig rate of retained iters

rel

if TRUE ratios BBmsy and FFmsy are stored

bpa

biomass precautionary reference point as fraction of Bmsy

Value

FLStockR with refpts


jabba2stars()

Description

jabba2stars()

Usage

jabba2stars(jabba, quantiles = c(0.05, 0.95), blim = 0.3, bthr = 0.5)

Arguments

jabba

fit from JABBA fit_jabba() or jabba$kbtrj

quantiles

default is 90CIs as c(0.05,0.95)

blim

biomass limit point as fraction of Bmsy, default 0.3Bmsy (ICES)

bthr

biomass precautionary point as fraction of Bmsy, default 0.5Bmsy (ICES)

Value

STARS list with $timeseris and $refpts


function to generate survey (pulse) and continuous LFDs

Description

function to generate survey (pulse) and continuous LFDs

Usage

len.sim(
  N_a,
  params,
  model = vonbert,
  ess = 250,
  timing = seq(0, 11/12, 1/12),
  unit = "cm",
  scale = TRUE,
  reflen = NULL,
  bin = 1,
  cv = 0.1,
  lmin = 5,
  lmax = 1.2
)

Arguments

N_a

numbers at age sample

params

growth parameter, default FLPar(linf,k,t0)

model

growth model, only option currently vonbert

ess

effective sample size

timing

t0 assumed 1st January, default seq(0,11/12,1/12), but can be single event 0.5

unit

default is "cm"

scale

if TRUE scaled to N_a input

reflen

evokes fixed sd for L_a at sd = cv*reflen

bin

length bin size, dafault 1

cv

variation in L_a

lmin

minimum length

lmax

maximum upper length specified lmax*linf

Value

FLQuant for length


function to generate survey (pulse) and continuous LFDs

Description

function to generate survey (pulse) and continuous LFDs

Usage

lfd.sim(
  object,
  stock,
  sel = catch.sel(stock),
  params,
  model = vonbert,
  ess = 250,
  timing = seq(0, 11/12, 1/12),
  timeref = 0.5,
  unit = "cm",
  scale = TRUE,
  reflen = NULL,
  bin = 1,
  cv = 0.1,
  lmin = 5,
  lmax = 1.2
)

Arguments

object

*FLQuant* numbers at age sample

stock

*FLStock* object

sel

selectivity, default catch.sel(stock)

params

growth parameter, default FLPar(linf,k,t0)

model

growth model, only option currently vonbert

ess

effective sample size

timing

default constinoues seq(0,11/12,1/12), but can be single event 0.5

timeref

reference timing of the sample, default 0.5 (e.g. survey or catch.n)

unit

default is "cm"

scale

if TRUE scaled to N_a input

reflen

evokes fixed sd for L_a at sd = cv*reflen

bin

length bin size, dafault 1

cv

variation in L_a

lmin

minimum length

lmax

maximum upper length specified lmax*linf

Value

FLQuant for length


Mlorenzen

Description

computes Lorenzen M with scaling option

Usage

Mlorenzen(object, Mref = "missing", Aref = 2)

Arguments

object

weight-at-age of class *FLQuant*

Mref

reference M for scaling

Aref

reference Age for scaling

Value

FLQuant m()

Examples

data(ple4)
Ml = Mlorenzen(stock.wt(ple4))
# Scale
Ms = Mlorenzen(stock.wt(ple4),Mref=0.2,Aref=2)
flqs = FLQuants(Lorenzen=Ml,Scaled=Ms)

generates flexible 5-paramater selex curves

Description

generates flexible 5-paramater selex curves

Usage

newselex(object, selexpars)

Arguments

object

FLQuant from catch.sel() or sel.pattern()

selexpars

Selectivity Parameters selexpars S50, S95, Smax, Dcv, Dmin

  • S50: age at 50

  • S95: age at 50

  • Smax: age at peak of selectivity before descending limb

  • Dcv: CV demeterming the steepness of the descending half-normal slope

  • Dmin: determines the minimum retention of oldest fishes

Value

FLquant with selectivity pattern

Examples

data(ple4)
sel = newselex(catch.sel(ple4),FLPar(S50=2,S95=3,Smax=4.5,Dcv=0.6,Dmin=0.3))
ggplot(sel)+geom_line(aes(age,data))+ylab("Selectivity")+xlab("Age")
# Simulate
harvest(ple4)[] = sel
sr <- srrTMB(as.FLSR(ple4,model=bevholtSV),spr0=mean(spr0y(ple4)))
brp = computeFbrp(ple4,sr,proxy="msy") 
fbar(brp) = FLQuant(rep(0.01,70))
stk = as(brp,"FLStock")
units(stk) = standardUnits(stk)
its = 100
stk <- FLStockR(propagate(stk, its))
stk@refpts= Fbrp(brp)
b0=an(Fbrp(brp)["B0"])
control = FLPar(Feq=0.15,Frate=0.1,Fsigma=0.15,SB0=b0,minyear=2,maxyear=70,its=its)
run <- rffwd(stk, sr=sr,control=control,deviances=ar1rlnorm(0.3, 1:70, its, 0, 0.6))
plotAdvice(run)

Bisection approach to optimise x for maximising y

Description

The plain bisection algorithm (Burden & Douglas, 1985) is employed here to find the value of a given forecast target quantity (e.g. 'fbar') for which a selected value of a performance statistic is obtained over a chosen period.

Usage

opt.bisect(
  stock,
  sr,
  deviances = rec(stock) %=% 1,
  metrics,
  statistic,
  years,
  pyears = years,
  tune,
  tol = 0.001,
  maxit = 15,
  log = TRUE,
  verbose = TRUE
)

Arguments

stock

object class FLStock

sr

object class FLSR

metrics

FLQuant of FLStock to be defined

statistic
years

years to be evaluated

tune

range for input x

tol

tolerance level

maxit

number of optimisation steps

log

if TRUE, optimise on log-scale

Author(s)

Credits to Iago Mosqueira

References

Burden, Richard L.; Faires, J. Douglas (1985), "2.1 The Bisection Algorithm", Numerical Analysis (3rd ed.), PWS Publishers, ISBN 0-87150-857-5

Examples

data(ple4)
stock <- propagate(stf(ple4, end=2118), 200)
srr <- predictModel(model=rec ~ ifelse(ssb <= b, a * ssb, a * b), params=FLPar(a=1.29, b=1.35e+06))
# GENERATE SRR deviances
devs <- ar1rlnorm(rho=0.4, 2018:2118, iters=200, meanlog=0, sdlog=0.5)
# DEFINE MMY statistic
statistic <- list(MMY=list(~apply(L,1,median), name="MMY",
  desc="ICES Maximum Median Yield"))
# CALL bisect over 100 years, Fmmy calculated over last 50.
fmmy <- opt.bisect(stock, sr=srr, deviances=devs, metrics=list(L=landings), 
statistic=statistic, years=2018:2118,
pyears=2069:2118, tune=list(fbar=c(0.01, 0.2)))
# fmmy
mean(fbar(fmmy)[,ac(2069:2118)])

sets plus group on FLQuant

Description

sets plus group on FLQuant

Usage

pgquant(object, pg)

Arguments

object

FLQuant

pg

Value

FLQuant


plotAdvice Plots stochastic stock dynamics against refpts for constant Fsim()

Description

plotAdvice Plots stochastic stock dynamics against refpts for constant Fsim()

Usage

plotAdvice(
  object,
  rpts = "missing",
  type = NULL,
  yield = c("catch", "landings")[1],
  plotrefs = TRUE,
  probs = c(0.05, 0.2, 0.5, 0.8, 0.95),
  colour = "dodgerblue",
  ncol = NULL,
  label.size = 2.5
)

Arguments

type

age-structured "asm" or surplus production "spm" plotting style

yield

option to select "catch" (default) or "landings"

plotrefs

if TRUE reference points are plotted

probs

determine credibility intervals, default 80th, 90th percentiles #' @param ncol number of plot panel columns

colour

color of CIs

label.size

size of refpts labels

stock

FLStock or FLStockR

refpts

as FLPar or Fbrp() if FLStockR is not provided or should be overwritten

Value

ggplot

Examples

data(ple4)
srr = srrTMB(as.FLSR(ple4,model=rickerSV),spr0=spr0y(ple4))
brp = computeFbrp(stock=ple4,sr=srr,proxy=c("sprx","f0.1","fe40"),blim=0.1,type="b0")
plotAdvice (ple4,brp)

plotAR Plots the new proposed ICES advice rule

Description

plotAR Plots the new proposed ICES advice rule

Usage

plotAR(
  pars,
  ftgt = 1,
  btrigger = "missing",
  bpa = "missing",
  bthresh = "missing",
  fpa = "missing",
  fthresh = "missing",
  bclose = 0,
  fmin = 0,
  obs = "missing",
  kobe = TRUE,
  alpha = 1,
  xmax = 1.2,
  ymax = 1.5,
  ylab = "missing",
  xlab = "missing",
  rel = FALSE,
  expand = TRUE,
  labels = TRUE,
  label.cex = 3.5,
  critical = TRUE
)

Arguments

pars

FLPar object or computeFbrp() ouput

  • 1: "Fbrp" # "F.." must first

  • 2: "Btgt"

  • 3: "Blim"

  • 4: "B0"

ftgt

factor to adjust Fmsy or its proxy e.g. 0.8Fmsy

btrigger

biomass trigger below which F is linearly reduced, if > 10 value, else factor*Btgt

bpa

precautionary biomass threshold, if > 10 value, else factor*Blim

fpa

option to input Fpa value

bclose

biomass that invokes fishing closure

fmin

minimum allowable (bycatch) fishing mortality under closure

obs

obtion to show observation with input class 'FLStock'

kobe

add kobe colour-coding

alpha

transparency of shading

xmax

multiplier for upper default xlim

ymax

multiplier for upper default ylim

ylab

option customize ylab

xlab

option customize xlab

rel

option to denote x,y labs as relative B/Btgt and F/Ftgt

expand

option to expand the plot area to border - default TRUE

labels

annotate reference point labels

critical

option to highlight critical zone below blim

labelslabel.cex=3.5

set size of labels

Value

ggplot

Examples

data(ple4)
srr = srrTMB(as.FLSR(ple4,model=segreg),spr0=spr0y(ple4))
blim = params(srr)[[2]]
brp = computeFbrp(stock=ple4,sr=srr,proxy="f0.1",blim=blim)
rpt = Fbrp(brp)
plotAR(rpt,btrigger=an(0.8*rpt["Btgt"]))
# Use Bpa as trigger (ICES style)
plotAR(rpt,obs=ple4,bpa=1.4)
# Change kobe to greyscale
plotAR(rpt,obs=ple4,bpa=1.4,kobe=FALSE)
# add fishing closure with minimum unavoidable F and Btrigger
plotAR(rpt,obs=ple4,bpa=1.4,btrigger=0.7,kobe=TRUE,bclose=1,fmin=0.01)
# show a relative
plotAR(rpt,obs=ple4,rel=TRUE,bpa=1.4,btrigger=0.7,kobe=TRUE,bclose=1,fmin=0.02)

plotbioage() Plots stock N_a, W_a, M_a and Mat_a by year

Description

plotbioage() Plots stock N_a, W_a, M_a and Mat_a by year

Usage

plotbioage(stk, ncol = 2)

Arguments

stk

stock object class FLStock

ncol

number of columns in multiplot

Value

ggplot

Examples

data(ple4)
plotbioage(ple4)

plotbioyr() Plots stock N_a, W_a, M_a and Mat_a across years

Description

plotbioyr() Plots stock N_a, W_a, M_a and Mat_a across years

Usage

plotbioyr(stk, ncol = 2)

Arguments

stk

stock object class FLStock

ncol

number of columns in multiplot

Value

ggplot

Examples

data(ple4)
plotbioyr(ple4)

plotdyn() Plots stock trajectories at age

Description

plotdyn() Plots stock trajectories at age

Usage

plotdyn(stk, ncol = 2)

Arguments

stk

stock object class FLStock

ncol

number of columns in multiplot

Value

ggplot

Examples

data(ple4)
plotdyn(ple4)

ploteq() Modification of method plot('FLBRP') to plot equilibrium output of computeFbrp()

Description

ploteq() Modification of method plot('FLBRP') to plot equilibrium output of computeFbrp()

Usage

ploteq(
  brps,
  refpts = "missing",
  obs = FALSE,
  rel = FALSE,
  rpf = TRUE,
  dashed = rpf,
  colours = "missing",
  panels = NULL,
  ncol = 2
)

Arguments

brps

output object from computeFbrp of class FLBRP

refpts

Reference points, defaults are computed refpts from computeFbrp()

  • Fbrp

  • Blim

  • B0

  • Btri

obs

Should observations be plotted? Defaults to 'FALSE'.

rel

option to denote x,y labs as relative B/Btgt and F/Ftgt

rpf

adds refpts in plots

dashed

plots vertical dashed lines to highlight refpts locations

colours

refpts colours, default is designed for computeFbrp() output

panels

plot panel option 1:4

ncol

number of plot panel columns

Value

ggplot

Examples

data(ple4)
srr = srrTMB(as.FLSR(ple4,model=rickerSV),spr0=spr0y(ple4))
brp = computeFbrp(stock=ple4,sr=srr,proxy=c("sprx","f0.1","msy"),blim=0.1,type="b0")
ploteq(brp,obs=TRUE)
ploteq(brp,obs=TRUE,refpts="msy",rel=TRUE)
brp.pa = computeFbrp(stock=ple4,sr=srr,proxy=c("msy","sprx","f0.1"),blim=0.1,bpa=Fbrp(brp)["Blim"]*2,type="b0")
ploteq(brp.pa,obs=TRUE,rel=TRUE)

plotFsim Plots stochastic stock dynamics against refpts for constant Fsim()

Description

plotFsim Plots stochastic stock dynamics against refpts for constant Fsim()

Usage

plotFsim(
  object,
  worms = TRUE,
  thinning = 10,
  probs = c(0.05, 0.2, 0.5, 0.8, 0.95),
  plotrefs = TRUE,
  colour = "missing",
  ncol = "missing",
  label.size = 3,
  yrs.eval = NULL,
  panels = "missing"
)

Arguments

object

output object from Fsim()

worms

option to show individual iterations

thinning

thinning rate of iterations shows, e.g. 10 shows every 10th

probs

determine credibility intervals, default 80th, 90th percentiles

plotrefs

if TRUE reference points are plotted

colour

color of CIs

ncol

number of plot panel columns

label.size

size of reference points

yrs.eval

last years to be used evaluation period, default half nyears

Value

ggplot


Plots the new proposed ICES advice rule

Description

Plots the new proposed ICES advice rule

Usage

plotMajuro(
  ftgt = 1,
  fthresh = 1.1,
  btgt = 1,
  blim = 0.1,
  btrigger = 0.8 * btgt,
  bthresh = 0.5 * btgt,
  bclose = 0,
  fmin = 0,
  obs = "missing",
  kobe = TRUE,
  alpha = 1,
  xmax = 1.5,
  ymax = 1.5,
  ylab = "missing",
  xlab = "missing",
  rel = FALSE,
  expand = TRUE,
  labels = TRUE,
  critical = kobe
)

Arguments

ftgt

Target F = min(Fbrp,Fp0.5)

btgt

Biomass target corresponding to Fbrp

blim

biomass limit

btrigger

biomass trigger below which F is linearly reduced

bthresh

biomass threshold beyond which biomass is classified sustainable

bclose

biomass that invokes fishing closure

fmin

minimum allowable (bycatch) fishing mortality under closure

obs

obtion to show observation with input class 'FLStock'

kobe

add kobe colour-coding

alpha

transparency of shading

xmax

multiplier for upper default xlim

ymax

multiplier for upper default ylim

ylab

option customize ylab

xlab

option customize xlab

rel

option to denote x,y labs as relative B/Btgt and F/Ftgt

expand

option to expand the plot area to border - default TRUE

labels

annotate reference point labels

critical

option to highlight critical zone below blim

Value

ggplot

Examples

plotMajuro()

plotpf()

Description

plots production functions

Usage

plotpf(object, quant = c("vb", "ssb"), fmsy = NULL, rel = FALSE)

Arguments

object

An *FLBRP*

quant

choose between vb and ssb or both

fmsy

default if Fmsy

rel

if TRUE ratios are produced for spcurve

Value

ggplot

Examples

data(ple4)
sr <- srrTMB(as.FLSR(ple4,model=bevholtSV),spr0=mean(spr0y(ple4)))
brp = FLBRP(ple4,sr)
asem2spm(brp)[1:4]
plotpf(brp)
plotpf(brp,rel=TRUE)

plotspr() Plots current vs unfished spawning biomass per recruit at age

Description

plotspr() Plots current vs unfished spawning biomass per recruit at age

Usage

plotspr(stk, nyears = 3)

Arguments

stk

stock object class FLStock

nyears

number of current last years, default is 3

ncol

number of columns in multiplot

Value

ggplot

Examples

data(ple4)
plotbioage(ple4)

plotWKREF Plots the new proposed ICES advice rule

Description

plotWKREF Plots the new proposed ICES advice rule

Usage

plotWKREF(
  ftgt = 1,
  btgt = 1,
  blim = 0.2,
  btrigger = 0.9 * btgt,
  bthresh = 0.8 * btgt,
  bclose = 0,
  fmin = 0,
  obs = "missing",
  kobe = TRUE,
  alpha = 1,
  xmax = 1.3,
  ymax = 1.5,
  ylab = "missing",
  xlab = "missing",
  rel = FALSE,
  expand = TRUE,
  labels = TRUE,
  critical = kobe
)

Arguments

ftgt

Target F = min(Fbrp,Fp0.5)

btgt

Biomass target corresponding to Fbrp

blim

biomass limit

btrigger

biomass trigger below which F is linearly reduced

bthresh

biomass threshold beyond which biomass is classified sustainable

bclose

ratio biomass/blim that invokes fishing closure relative to blim

fmin

minimum allowable (bycatch) fishing mortality under closure

obs

obtion to show observation with input class 'FLStock'

kobe

add kobe colour-coding

alpha

transparency of shading

xmax

multiplier for upper default xlim

ymax

multiplier for upper default ylim

ylab

option customize ylab

xlab

option customize xlab

rel

option to denote x,y labs as relative B/Btgt and F/Ftgt

expand

option to expand the plot area to border - default TRUE

labels

annotate reference point labels

critical

option to highlight critical zone below blim

Value

ggplot

Examples

plotWKREF()
# Close fishery at Blim and adjust axis labels to relative
plotWKREF(blim=0.2,bclose=0.2,rel=TRUE)
# Close fishery at Blim, but allow fmin (e.g. bycatch)
plotWKREF(blim=0.2,bclose=0.2,fmin=0.1,rel=TRUE)
# Change Btrigger above Btgt
plotWKREF(blim=0.2,bclose=0.2,fmin=0.1,btrigger=0.80,rel=TRUE)
# Plot stock data
data(ple4)
plotWKREF(ftgt=0.25,btgt=8e+05,btrigger = 0.9*8e+05, blim=2e5,bclose=3e5,fmin=0.03,obs=ple4)

r4sscol

Description

r4sscol

Usage

rc4(n, alpha = 1)

Arguments

n

number of colors

alpha

transluscency

Value

vector of color codes


rffwd() Project forward an FLStock with evolutionary Fbar

Description

rffwd() Project forward an FLStock with evolutionary Fbar

Usage

rffwd(object, sr, fbar = control, control = fbar, deviances = "missing")

Arguments

object

An *FLStock*

sr

A stock-recruit relationship, *FLSR* or *predictModel*.

fbar

Yearly target for average fishing mortality, *FLQuant*.

control

Yearly target for average fishing mortality, *FLPar*.

deviances

Deviances for the strock-recruit relationsip, *FLQuant*.

Value

The projected *FLStock* object.

Examples

data(ple4)
sr <- srrTMB(as.FLSR(ple4,model=bevholtSV),spr0=mean(spr0y(ple4)))
brp = computeFbrp(ple4,sr,proxy="msy") 
fbar(brp) = FLQuant(rep(0.01,70))
stk = as(brp,"FLStock")
units(stk) = standardUnits(stk)
its = 100
stk <- FLStockR(propagate(stk, its))
stk@refpts= Fbrp(brp)
b0=an(Fbrp(brp)["B0"])
control = FLPar(Feq=0.15,Frate=0.1,Fsigma=0.15,SB0=b0,minyear=2,maxyear=70,its=its)
run <- rffwd(stk, sr=sr,control=control,deviances=ar1rlnorm(0.3, 1:70, its, 0, 0.6))
plotAdvice(run)

Function to characterize Productivity and refpts based on r and Generation

Description

Function to characterize Productivity and refpts based on r and Generation

Usage

rGclass(r = NULL, gt = NULL)

Arguments

r

value of the intrinsic rate of population increase

gt

generation time G

Value

list with Productivity category and suggest Fbrps


schaefer.sim()

Description

generates a Schafer surplus production model with process and observation error

Usage

schaefer.sim(
  k = 10000,
  r = 0.3,
  q = 0.5,
  pe = 0.1,
  oe = 0.2,
  bk = 0.9,
  years = 1980:2022,
  f0 = 0.2,
  fhi = 2.2,
  flo = 0.8,
  sigmaF = 0.15,
  iters = 1,
  blim = 0.3,
  bthr = 0.5,
  rel = FALSE
)

Arguments

k

carrying capacity

r

intrinsic rate of population increase

q

catchability coefficient

pe

process error

oe

process error

bk

initial fraction of b/k

years

time horizon

f0

factor for initial year as f0 = f/fmsy

fhi

factor for high F as fhi = f/fmsy

flo

factor for low F as flo = fbar/fmsy

sigmaF

variation on f trajectory

iters

number of iterations

rel

if TRUE metrics B/Bmsy and F/Fmsy are produced

Value

FLQuants

Examples

stk = schaefer.sim(iters=100,q=0.5) 
plotAdvice(stk)
plot(FLIndex(index=iter(stk@stock,1))) # index

scales catch-at-age to total catch with error (optional)

Description

scales catch-at-age to total catch with error (optional)

Usage

sops(object, stock, sigma = 0.1, what = c("catch", "landings", "discards")[1])

Arguments

object

FLQuant catch.n, discard.n, landings.n

stock

FLStock

sigma

observation error

what

type c("catch", "landings", "discards")

Value

FLQuant


spict2FLQuant()

Description

spict2FLQuant()

Usage

spict2FLQuant(
  x,
  metric = c("ssb", "fbar", "catch", "stock", "harvest")[1],
  osa = FALSE,
  forecast = F,
  what = c("mle")
)

Arguments

x

fit from SPICT

osa

add one-step-ahead forecast

forecast

TRUE/FALSE

Value

FLQuant

Author(s)

adopted from Laurie Kell (biodyn)


spict2FLStockR()

Description

spict2FLStockR()

Usage

spict2FLStockR(
  res,
  blim = 0.3,
  bthr = 0.5,
  rel = FALSE,
  osa = FALSE,
  forecast = NULL,
  itsCI = 1
)

Arguments

res

fit from SPICT

blim

biomass limit reference point as fraction of Bmsy

bthr

biomass precautionary reference point as fraction of Bmsy

rel

if TRUE ratios BBmsy and FFmsy are stored

osa

add one-step-ahead forecast

forecast

extract forecast TRUE/FALSE

Value

FLStockR with refpts


spict2stars()

Description

spict2stars()

Usage

spict2stars(spict, blim = 0.3, bthr = 0.5)

Arguments

spict

fit from fit.spict()

blim

biomass limit point as fraction of Bmsy, default 0.3Bmsy (ICES)

bthr

biomass precautionary point as fraction of Bmsy, default 0.5Bmsy (ICES)

Value

STARS list with $timeseris and $refpts


ss2FLStockR()

Description

ss2FLStockR()

Usage

ss2FLStockR(mvln, thin = 10, output = NULL)

Arguments

mvln

output from ssmvln()

thin

thinnig rate of retained iters

output

expected outputs presented as "mle" or median of "iters"

Value

FLStockR with refpts


ss2stars()

Description

ss2stars()

Usage

ss2stars(mvln, output = c("iters", "mle")[1], quantiles = c(0.025, 0.975))

Arguments

mvln

output of ssmvln()

output

choice c("iters","mle")[1]

quantiles

default is 95CIs as c(0.025,0.975)

Value

STARS list with $timeseris and $refpts


ss3col

Description

ss3col

Usage

ss3col(n, alpha = 1)

Arguments

n

number of colors

alpha

transluscency

Value

vector of color codes


ssmvln()

Description

function to generate uncertainty for Stock Synthesis

Usage

ssmvln(
  ss3rep,
  Fref = NULL,
  years = NULL,
  virgin = FALSE,
  mc = 1000,
  weight = 1,
  run = "MVLN",
  addprj = FALSE,
  ymax = NULL,
  xmax = NULL,
  legendcex = 1,
  verbose = TRUE,
  seed = 123
)

Arguments

ss3rep

from r4ss::SS_output

Fref

Choice of Fratio c("MSY","Btgt","SPR","F01"), correponding to F_MSY and F_Btgt

years

single year or vector of years for mvln

virgin

if FALSE (default) the B0 base for Bratio is SSB_unfished

mc

number of monte-carlo simulations

weight

weighting option for model ensembles weight*mc

run

qualifier for model run

addprj

include forecast years

ymax

ylim maximum

xmax

xlim maximum

verbose

Report progress to R GUI?

seed

retains interannual correlation structure like MCMC

out

choice c("iters","mle")

plot

option to show plot

legendcex=1

Allows to adjust legend cex

Value

output list of quant posteriors and mle's

Author(s)

Henning Winker (GFCM)


stock2ratios()

Description

stock2ratios()

Usage

stock2ratios(object)

Arguments

object

of class *FLStockR*

Value

FLStockR with ratios F/Ftgt and B/Btgt


stockMedians

Description

stockMedians

Usage

stockMedians(stock)

Arguments

stock

class FLStock or FLStockR

Value

medians of all FLstock FlQuants


updsr()

Description

updates sr in brp after changing biology

Usage

updsr(object, s = 0.7, v = NULL)

Arguments

object

An *FLBRP*

s

assumed steepness s

v

input option new SB0

Value

FLBRP

Examples

data(ple4)
sr <- srrTMB(as.FLSR(ple4,model=bevholtSV),spr0=mean(spr0y(ple4)))
brp = FLBRP(ple4,sr)
s = sr@SV[[1]]
params(brp)
# change
m(brp) = Mlorenzen(stock.wt(brp),Mref=0.15)
brpupd =updsr(brp,s)
params(brp)

updstars()

Description

updstars()

Usage

updstars(star, newrefpts)

Arguments

star

output of star list

newrefpts

manually adjusted reference points

Value

STARS list with $timeseris and $refpts